" ENGINEERING PHYSICS DIVISION
| ENGINEERING PHYSICS DIVISION
| ENGINEERING PHYSICS DIViSION
ENGINEERING PHYSICS DIVISION
| ENGINEERING PHYSICS DIVISION
ENGINEERING PHYSICS DIVISION
ENGINEERING PHYSICS DIVISION
ENGINEERING PHYSICS DIVISION
ENGINEERING PHYSICS DIVISION
ENGINEERING PHYSICS
ENGINEERING PHYSICS DI\
ENGINEERING PHYSICS
ENGINEERING PHYSICS DIVIS
ENGINEERING PHYSICS
ENGINEERING PHYSICS
ENGINEERING FH
ENGINEERING PHY:

SromaL

Base Technology
ENGINEERING PHYSICS DR
ENGINEERING PHYSICS DIV
ENGINEERING PHYSICS
ENGINEERING PHYSICS |
ENGINEERING PHYSICS
ENGINEERING PHYSICS DIV
ENGINEERING PHYS
ENGINEERING PHYSICS DIV
ENGINEERING PHYSICS DIy
ENGINEERING PHYSICS D
ENGINEERING PHYSICS D
| ENGINEERING PHYSICS D

ANL-FRA-165

Engineering Physics
Production Code
Implementation on the
Cray X-MP

by
C. H. Adams, K. L. Derstine, and B. J. Toppel

{ \, Argonne National Laboratory, Argonne, lllinois 60439
. * Operated by the University of Chicagg
+«’ forthe United States Department of Energy Under Contract W-31-109-Eng-38

Nk, .;‘"’

Argonne National Laboratory, with facilities in the states of Illinois and Idaho,
is owned by the United States government, and operated by The University of
Chicago under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibﬂlty for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or -
represents that its use would not infringe privately owned ;
rights. Reference herein to any specific commercial product, F
process, or service by trade name, trademark manufacturer, 4
or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

PR

March 29, 1989 FRA-TM-165

ENGINEERING PHYSICS PRODUCTION CODE IMPLEMENTATION ON THE CRAY X-MP

by

C. H. Adams, K. L. Derstine, and B. J. Toppel

Engineering Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

»

FRA TECHNICAL MEMORANDUM NO. 165

Work supported by the U.S. Department of Energy, Nuclear Energy Programs, under contract
W-31-109-Eng-38.

ABSTRACT

Engineering Physics Production Code Implementation on the Cray X-MP
by

C. H. Adams, K. L. Derstine, and B. J. Toppel

This document describes Engineering Physics Division software designed to ease transition to the
Cray X-MP computer and to provide support in the long term for a multi-computer environment for batch
reactor analysis calculations. These activites include development of Unicos scripts to provide easier
access to the new system, implementation of the File Transfer Utility FTU which provides format conver-
sion of binary files between the Cray and other computer systems, and development of a modular environ-
ment analogous to the system which has been in use on the Argonne IBM computer system for many

years.

- i -

LT 1\6\15; "
e : Q,ﬁ}m
e angl
i P
L e e m 41}

CONTENTS

SRR TR T T T T T G S e e e e iii
el D T T e e e S R e e e 1
Chapter 2: APSHELL, UNICOS Scripts for Batch Computing 2
INEOHHCHONSEREE ERRAEIEE. o o oo e e e e 2
e he VAR ADICA I S i) . o e i s s e e et SN]
S HEARITENE, ST TR S RS St S RN e e o - 5
BTN et Sl o Wi v s b WS A R ey 5 ot az R AT 6
SR EDINTCIS U0 et 4 e o S A r e 11 < W W I ek s 6
L b e NS v S B R i S O N A ey e 6
QBEARERWRITERSS Salie i =5 < iis ne v o ol o o 5 e TR R 7
AREINES B ol S e Sl e L 50 L il e it g e RN 7
NERIBE S AGHSEE, (o0 TIRE G M Tattih: v o s o o a5 o st e il i R i
NERVTRI e e 2 Mgl e i ot 560 ity oo DL 0 o et Foaribiis AT R 8
AEBOSTPAMHSS R V0o ool i o o s e ot oo e e el oot e SRR T 8
SEEREEATIHINGEI. . . . o b o v o o g e e s e B) R 8
o121 D] L S SR S U OSSN N L2 ok o 9
User ABSHBL T Seripts Bt b it W o e S SMltaneie =« » o vosionass s Mast R 9
APSHELL

APECHOV siting 17 isteing2 Usting3" 5ot S Thaiiat. ¢ - o o1 e s o s i e e e o 2
TEBOMB COmMMANAL © . . .« o ocinie v o o o e oFe s o e e e iaiieiie et el e e a 10
POSTEIBEbmfilel” ibmfile2' ... ibmfilen: .0 00 L 10
POSTPATH pathl path2 ... pathn TR R B R P oLzt) (s 11
EREPIBSihmfile] ibmfile2 ... - dbmfilen . oo oo DL s SRR 11
EREPATHY patiils path? .. PRI - o oo o s ooisaie 00 e o ks e Ay Tl
STAGEINtype crayfile iibmfile el el jel oo i e, oo o s 12
STAGEOU “type crayfile dbmfile jecl jel gel . . .0 5 o0 2 S S 13
STASHBIEE S eravhles . .ol i 0 e L A 14

XDIF3D crayfile, XFTU crayfile, XREBUS3 crayfile, XTWODANT crayfile,
% VIM crayfile, XVARISD crayfile = . . . o .00 w0 s it s o s anIERCREES 14
Shelll Propranime e ShellVanibles =5l 5 50 0. o D L G e i N 15
APTEMP, APTEMP2, APTEMPX, APTEMPS, APTEMPS2, APTEMPSS, etc. 1y
Shell Brprammer APSHELL SCOpIS:: 0 ol oo % s o nlvn o o i el S 15
TS IEABIE L it i S e R S R IO e e M L B v 15
STHITIE PRI o gt ot CACCale R g o NS S SRR o GOl BRI o 41 e 15
AEWERAD o0 BIEPEIRRE S ol 0y o b e e e s e e e R R 15
Ehidpier 42 The Bile Transfer Nty ETL 00 o .20 o o %0 v Jiins el e 16
BITEAITEI b oo n o S R L BT e SRR ST D o o 16

LR BT T O L 0ITE I o s ol it eSO S SRR &5 s
LG E e et oy RISy s S P RO 0 o) e
FETTU By (Rl T 1 (T e S R D S E S PRPE S
e S o U S S N N it e ot
HS O T (L 2 L R S P
R RaEREn ORI 4. Shor Sl oo Peai s o e a o e s m e elohe e
U RIS oty e et O U A S IR VO e 5 i

L T ST 30 (o) R SR S S R S e
IR At OD SIS 0 e T e b B, S+ o o e e e e et ek A e

Chapter 4: A Modular Programming System for Engineering Physics Division Codes

IV TG ol oy 6 5 B RGeS e T T
Functional Requirements for a Fortran 77 based Modular System
IHIBIEMENTatOIEIVERVIEIWIREE - 61 mriiate L N i e e e e e e e G
Synchrenizationiof Panted QUIPUL . iiis © o o b e v o v o v e v e e e e e s e e
Synchronization of Printed Output in the UNICOS System
Synchronization of Printed Output in the VAX/VMS System
Synchronization of Printed Output on the IBM MVS System
Mothnedunkinmet e N o R, el L L e e e D e e
Muodule'linking mithe TINICOSSYSIEM' . . . 0 o ocieh s o oe s ol sasal vl S
Module Linking in the VAX/VMS System
Moadule Emianginithe IBNMIMVS SYSIEM' | . . oo & omiias 3 7 ohe e o e
Local Code Conversion Considerations for the New Modular System
BONVECD Keyword Changes =708 00 L o Sog 00T - et N S S R
EhePnivenChanges . n ot s i b TS SRR et e e S R
pplcdliony MoedulelChanges:” T, o . | shb b Al il e sR e R SR
Changes to Utility Subroutines in the Existing Libraries
Modular Library Maintenance and Applications
Modular Library Maintenance on the UNICOS System
Madular ApplicationSisies o 00 ot o e o LRI R o o e o

I cknowledgements BB EaR. s SR St S L e i e B e s e T

IERTCERIICES WINPT iR S 50 08 5 ot v o b b e v e s et e AR A e

Appendix/A: N IBM Catalogned Procedure APPROC . vt o . % coilole o o0t nliS IRUEER

e e e
A

€F;

v

-

Mgy

ST i il

Fo

it P s
L S R

Saniulol? xmﬂ‘ 1

g0t

LIST OF FIGURES

Simple DIF3D Job Using APSHELL Shell Variables 3
Elaborate Example of the Use of the APSHELL Shell Variables 4
Typical Cray FTU Job Converting IBM to Cray Format 18
Typical Cray FTU Job Convening VAX to Cray Bormat = 520, a5 i e e e 19
EEDICABIBNERTUSTODEGF" 0 r. o . e o o e s e e e e o RO 20
ypiealEWAN RIIGOMMANDL EIle. 0 i e o b s i M 21
FPiEGenerated Editiof DatasetNDXSRE . o . o000 L oL RS e 22
BED Equivalent foriDataset NDXSRE00 .00 oo b o SR 23
Simple Path-Driver Module in a Modular System 29
Simple Applications Module in a Modular System 30
Typical segldr Overlay Tree DirectivesFile 36
UNICOS Script Fragment for UpdatingaMODLIB 37
Sample Production Job Script Fragment for UNICOS Modular System 38
IBM Catalogned Procedure APPROE o0 023 v Lo e o vt oo SRR 42

=V -

g

g e u-,zm_u T
-.'.‘a:::,?, aé%dfﬂm : it
TS | mmsm e W
: L m-ﬁqf)n

1t

2

Bt

Datasets Processed by FTU

FTU Subroutines

LIST OF TABLES

Cray Format Conversion Utility Routinesusedby FTU

- vii -

Chapter 1
INTRODUCTION

The arrival of a Cray X-MP/14 at Argonne significantly changed the computing environment for
users of Engineering Physics Division (EP) reactor analysis programs. In a relatively short period of time
the Central Computing Facility expanded from an IBM-only operation to one that offered batch and inter-
active computing on IBM, DEC and Cray machines. Engineering Physics Methods and Computational
Support (M&C) Section undertook the development of several pieces of software designed not only to
make the transition easier but also to provide support in the long term for a multi-computer environment
for batch reactor analysis calculations.

The UNICOS operating system on the Cray is quite different from the IBM Job-Control Language
(JCL) that EP users were accustomed to. Most users did not want to leam Unix to the degree necessary to
maintain the job-control statements in their batch-job input files. Chapter 2 describes APSHELL, a
system of UNICOS shell variables and scripts which provides an easy-to-use environment for the kind of
batch work that makes up most of the Division's computing. The M&C Section will maintain APSHELL
in such a way as to accomodate future system changes without requiring users to modify their job input.
When the Division acquires Unix-based workstations we intend to adapt APSHELL to them to provide
continuity.

Ancillary calculations are often performed following a long production calculation making use of
smaller codes on the IBM computers at ANL. With the production codes moving over to the Cray com-
puter, there was a need to provide a binary file format converter so that binary files written on the Cray
could be read on the IBM computers, and vice versa. Chapter 3 describes the File Transfer Utility, FTU
which permits communication via binary files between the Cray, IBM, VAX, and CDC computers.

.

The advantages of modular programming have been enjoyed at ANL since the development of the
ARC System [1]. Since the UNICOS operating system does not provide the capability of linking modular
codes at run time, this effort has included the development of a modular programming system on the
Cray, IBM, and VAX computer systems which essentially duplicates the capabilities afforded by the IBM
operating system and is far more portable. Chapter 4 describes the characteristics of this modular pro-
gramming system.

A number of places in this document refer to procedures or scripts with the prefix AP rather than EP
(e.g. APSHELL, APPROC, etc.). This is done for historical reasons since their development occurred in
the Applied Physics Division before it was combined with the Engineering Division and renamed the
Engineering Physics Division.

Chapter 2
APSHELL, UNICOS SCRIPTS FOR BATCH COMPUTING

21 Introduction

This set of UNICOS shell variables and scripts is intended to provide a batch computing environ-
ment in which users of the Engineering Physics Division's reactor analysis codes can work conveniently
and safely without having to write or maintain a lot of UNICOS JCL themselves. In some sense, they
serve the same sort of function that the catalogue procedures ARCSPOnn have been providing on the IBM
machines. However, UNICOS and IBM/MVS are entirely different kinds of operating systems, and
direct comparisons between the ARCSP procedures and APSHELL are generally not useful. APSHELL
was developed with the following objectives in mind:

EP's production codes run in a batch environment, but UNICOS is fundamentally an
interactive system. Batch jobs, running unattended, need simple-to-use tools for making
basic decisions about how to handle errors.

Scripts that fetch and dispose files have built-in, default IBM JCL, but since EP's IBM
users generally feel comfortable about overwriting DD cards in IBM catalogued proce-
dures, those scripts permit the entry of IBM JCL to change the default JCL of files.

Users are permitted, and even encouraged, to mix UNICOS and APSHELL commands.

UNICOS system output is just as eye-tangling to read as the IBM's JESMSG, JESJCL
and SYSMSG files. APSHELL provides easily-spotted error messages.

To the extent possible, APSHELL provides English-language information and error mes-
sages.

The APSHELL syntax is different from UNICOS; in particular APSHELL commands are
in upper case and do not follow the UNICOS practice of identifying parameters with
hyphens. This is done partly to simplify the syntax and partly to make a clear distinction
between UNICOS and APSHELL commands. :

For the kind of work we do in EP, APSHELL lets users set up jobs with little or no IBM JCL and
with a minimum of Cray commands. The APSHELL scripts perform some of the basic functions necded
in batch computing on Argonne's Cray X-MP:

STAGEIN and STAGEOUT manage the flow of files between the X-MP and the IBM

disk farm. Although they are built around the UNICOS commands "fetch" and "dispose",
they include error checking and offer built-in, default IBM JCL.

PREPATH and POSTPATH modify the search path to include access to additional dircc-
tories containing other scripts.

PRELIBand POSTLIB make available librarics of load modules.

L%

IFBOMB and STASHFILE are t00ls 1o be used in detecting errors and recovering from
various kinds of abnormal terminations.

APSHELL is an initialization script.

A number of additional, relativcly simple scripts (XDIF3D, XFTU, XREBUS3,
XTWODANT, XVIM, XBANDIT, XRETALLY, and XVARI3D) are available for
some production codes.

Beside these scripts, the APSHELL environment includes a number of shell variables which users can sct
to simplify the disposition of output and the definition of job parameters.

Figure 1 illustrates a very simple DIF3D [2] job that uses APSHELL shell variables and scripts.
The job fetches a Cray-format ISOTXS [3] data sct and, if the fetch was successful, executes DIF3D. The
DIF3D output and the standard-output file are sent to the 3800 printer.

user=
QSUB-r CHA01
QSUB -q y

QSUB ~-1T 80

QSUB -1M 500kw
QSUB -eo

QSUB
APOUTPUT=output
APDEST=PR0

. APSHELL

cat > input <<'EOD'
BLOCK=0LD
DATASET=ISOTXS
BLOCK=STP021

W 3 I W W

BCD job input

EOD

STAGEIN CRAYBINARY ISOTXS B21006.VERY.TEMP.CRAY.ISOTXS
IFBOMB

XDIF3D

Figure 1. Simple DIF3D Job Using APSHELL Shell Variables

Figure 2 shows a much more complicated job that fetches a number of different kinds of files from
the IBM disks, compiles and links a UDOIT into a stand-alonc DIF3D, uscs the lfTU utility (Chapter 3) to
convert an ISOTXS file from IBM to Cray format, cxccules DIF3D and finally disposes an RTFLUX (3]

3

file and the Cray load module back to the IBM disks, a copy of the output to microfiche and a PostScript

graphics file to the LaserWriter at RADS12. There are a number of error checks along the way to abort
the job if a problem ariscs.

user=

QSUB -r CHAO06

QSUB -q y

QSUB -1T 70

QSUB -1M 1000Kw
QSUB -eo

QSUB

set -vx

APOUTPUT=output

APDEST=PRO, FLASH=LINE

APLASERWRITER=RM112PR2

APBANNER=sample2

APFETCH=YES

. APSHELL
FORHABHHRAHRRHARAFRAAA R R AR RN AR R AR AR AR AR AR AR
COMPILE A UDOIT MODULE AND LINK INTO DIF3D.
FOARAAAAAAAAAAARRARARAA AR A AR
STAGEIN CARDS program.f B21006.VERY.TEMP.FORTRAN 'DISP=(OLD,DELETE) "
cft77 -e Dcxs program.f >> output

IFBOMB banner 'cft77' >> output

grep '‘'error' program.l >> output

grep 'warning' program.l >> output

cat program.l >> output

cat <<END_OF_FILE > directs

LIB=/nl1/b21006/cccc/seglib.a, /n1/b21006/cccc/syslib.a
LIB=/n1/b21006/cccc/calanl.a, SANLUTIL, SDISLIB

ECHO=ON

MODULES=ENDFDA:/nl1/b21006/cccc/seglib.a

USX=WARNING

MAP=ALPHA

FORCE=0ON

ABS=dif3d

END_OF_FILE

segldr program.o directs >> output

IFBOMB

FORRRARAAAAAARRRHAAARAA AR
STAGEIN ISOTXS, EXECUTE FTU.

FOARRARAAAAAAAAAAA AR R
STAGEIN IBMBINARY STACK B21006.VERY.TEMP.IBM.ISOTXS

cat > input <<'EOF'

ISOTXS 1 CRAY IBM

EOF

Figure 2. Elaboratc Example of the Usc of the APSHELL Shell Variables

XFTU

rm STACK

IFBOMB

FORREARRE R R R R R R R A4
EXECUTE DIF3D WITH THE UDOIT.

#ORERRARERAR R R R R R F R H AR R H AR AR R4
cat <<EOD> input

BLOCK=0LD

DATASET=ISOTXS

BLOCK=STP021

BCD job input

EOD

XDIF3D

STAGEOUT POSTSCRIPT fort.98

STAGEOUT OUTPUT output ' (ANLVM,FICHE)'

IFBOMB

STAGEOUT LOADMODULE dif3d B21006.CRAY.UDOIT.MODLIB \
'DISP=(NEW,CATLG) , UNIT=TEMP, SPACE=(TRK, (60,5) ,RLSE) ' \
'DCB"

Figure 2. Elaborate Example of the Usc of thc APSHELL Shell Variables (cont'd.)

The next section of this writeup describes a sct of shell variables which the user may want to set.
The last section describes the shell scripts available and shows cxamples of their use.

2.2 User Shell Variables

Users may set default definitions for a number ol job paramciers by means of the "shell variables"
described in this section. In most cascs they should probably be defined before the initialization call to
APSHELL so that they are available to all of (he APSHELL scripts invoked during a job, but there are

situations where users will want to change them during cxccution. For most of the following shell vari-
ables the initialization call to APSHELL will sct default definitions if the user has not supplicd them.

221 APBANNER

APBANNER contains a string (up to 10 characters) that will be printed at the top of the header
page in big letters.

If the shell variable APBANNER is (o be sct, it must be sct before the initializing command
APSHELL.

APBANNER is uscd by thc APHEADER scripl.

5"

2:2:2

223

224

Example: APBANNER='hi there'

Default: the NQS job name (the "request-name” define by QSUB -r)

APDEST

This is the default destination for standard output and other printed output. The destination can
include other parameters recognized by the MVS Station; one of the examples below turns on the
forms flash for the 3800 printer. Also sce the examples below for the special format required to
make the default destination a CMS session.

To be fully effective this parameter should be sct before the initialization call to APSHELL.
APDEST is used by APSTART and APWRAP.

Examples: APDEST=RADS12
APDEST=PRO, FLASH=LINE
APDEST=PRO, COPIES=2
APDEST="' (ANLVM, B21006) '
APDEST=VMFICHE

Decfault: null

APFETCH

When APFETCH=YES both the standard output filc and the output file defined by the
APOUTPUT shell variable will be routed to Wylbur FETCH before printing, regardless of what is
specified in the IBM JCL that submits the Cray job. If this shell variable is set to anything else
the MVS station determines whether or not the output is to be FETCHed from the IBM JCL that
submits the job.

If the shell variable APFETCH is (0 be sct, it should be sct before the initializing command
APSHELL.

APFETCH is used by the APSTART and APWRAP scripts.

Examples: APFETCH=YES
APFETCH=NO
Default: null

When APFETCH=YES is used with APDEST=VMFICHE, the output files can be
FETCHed before they are sent to the fiche unit. When APDEST=' (ANLVM, FICHE) '
the output files go directly to the fiche unit and cannot be FETCHed.

APINPUT
APINPUT is the default BCD input lile name for the production-code scripts XDIF3D, XFTU,
XREBUS3, XTWODANT, XVIM, XBANDIT, XRETALLY, and XVARI3D. Those scripts
also permit the uscr o specify the BCD inpukfile name as an argument.

il

225

2.2.6

=20

The shell variable APINPUT can be sct at any time.

APINPUT is used by the XDIF3D, XFTU, XREBUS3, XTWODANT, XVIM, XBANDIT,
XRETALLY, and XVARI3D. scripls.

Examples: APINPUT=my_ input
Default: input
APLASERWRITER

APLASERWRITER is the default destination for PostScript files handled via the STAGEQUT
script.

The shell variable APLASERWRITER can be sct any time before the command STAGEOUT .

Examples: APLASERWRITER=RM112PR2 (RADS12)
APLASERWRITER=RM010PR3 (ZPPR)
Default: RM113PR2 (building 221)
APLINES

APLINES contains the file line limit for the job (i.c. the JCL paramcter OUTLIM). Supply the
limit in actual number of lines (not in thousands as on the IBM machinc).

If the shell variable APLINES is to be set, it should be sct before the initializing command
APSHELL.

APLINES is used by the APSTART, STAGEOUT and APWRAP scripts.

»

Examples: APLINES=100000
Default: 10000
APMESSAGES

Normally the APSHELL scripts print only important messages; individual commands within each
script are not echoed as they arc cxecuted. When APMESSAGES=VERBOSE all commands cxe-
cuted within each script are echoed. This can produce a very busy standard output file, but it is
sometimes uscful in debugging a script.

APMESSAGES can be redefined as often as necessary during an exccution to toggle the command
cchoing.

APMESSAGES is usced by all the APSHELL scripts.

Examples: APMESSAGES=VERBOSE
APMESSAGES=

228

2.2.9

2.2.10

Default: null

APOUTPUT

This is the name of a file to which carriage-controlled output is to be written. The user is respon-
sible for directing such output to the file when he issues UNICOS commands; the APSHELL
scripts XDIF3D, XFTU, XREBUS3, clc. automatically route printed output from production
codes to that file. At the completion of the job the file will automatically be directed to the desti-
nation specified by the APDEST shell variable, subject to how the user has set APFETCH.

To be fully effective this parameter should be sct before the initialization call to APSHELL .

APOUTPUT is used by APSTART, APWRAP, and the production-code scripts XDIF3D,
XVARI3D, etc.

Examples: APOUTPUT=output
APOUTPUT=fileout
Default: carriage-controlled output is written to the standard output file.
APPOSTPATH

APPOSTPATH defincs extensions (o the scarch path that are to be concatenated at the end of the
scarch path and that are to remain there for the duration of the job.

If the shell variable APPOSTPATH is (o be sct, it must be sct before the initializing command
APSHELL. To add additional paths (and then to remove them) during execution use the
POSTPATH script.

APPOSTPATH is used by the APSTART and POSTPATH scripts.

Examples: APPOSTPATH=$HOME/my_scripts
APPOSTPATH=$HOME/my_scripts:/nl/bnnnnn/his_scripts
Default: null
APPREPATH

APPREPATH dcfines extensions to the scarch path that are to be concatenated at the front of the
scarch path and that are to remain there for the duration of the job.

If the shell variable APPREPATH is (0 be sct, it must be sct before the initializing command
APSHELL. To add additional paths (and then to remove them) during execution use the
PREPATH script.

APPREPATH is used by the APSTART and PREPATH scripls.

Examples: APPREPATH=$HOME/my_scripts
APPREPATH=$HOME/my_scripts:/nl/bnnnnn/his_scripts

Default: null

el

2.3

APTEST
APTEST is a shell variable used by the APSHELL scripts as an error-condition sentinel for the
IFBOMB script. Users may occasionally want to clear a previous error condition by setting this
variable to null.

APTEST is read by the IFBOMB script but may be set by any of the APSHELL scripts.

Example: APTEST= (to clear error-condition sentinel)
Default: null
User APSHELL Scripts

A number of scripts have been written which are of general interest to both the shell programmer and
to users. The latter will find these advantageous since they largely eliminate the need for extensive
knowledge of the UNIX command language. In order to use any of these scripts, the APSHELL script
must be executed first, and the command that executes it must be preceded by a "dot-space" (see below).
None of the other commands require the "dot-space".

23.1

23.2

. APSHELL

This is an initialization call. It must come first, or none of the other scripts will be available to
the job. Users should define most of the shell variables described in the previous section before
invoking APSHELL.

This is a one-line script residing in the public directory /usr/public. It,intum, executcs
the script APSTART which, among other functions, sets default values for the shell variables
defined in the previous section, changes to a SCRATCH directory, starts the accounting utility,
modifies the search path to make other APSHELL scripts accessible, sets a trap that causes the
script APWRAP to be executed when the job tenmndles invokes uscproute, and invokes the
APHEADER script to print the header page showing shéll variable definitions. The APWRAP
script prints an accounting report (including a breakdown of costs by charge category provided by
the script /n1/b27484/jobcost) and disposes the output file defined by APOUTPUT.

There are no arguments.

APECHO "string1" "string2" "string3" ...
This script echos the input strings beginning each string on a new line. There may be any number
of strings supplied as arguments. The strings arc cchoed both to the standard output, and to
APOUTPUT if it exists.

Examples: APECHO"This dsiline 1% “Thigiisiline 2%
APECHO " " " " " "

If no arguments are provided, APECHO does nothing.

233

234

IFBOMB command

This script checks to see if there was an error either in the execution of the immediately preceding
UNICOS command or in the execution of any earlier APSHELL script. If there was no error, the
script does nothing. If an error is detected, and if there is no argument, the script invokes the
APWRAP script and the job terminates. If an error is detected, and there is an argument,

IFBOMB executes the argument as a command and lets the job continue.

Errors in the immediately preceding UNICOS command are detected by testing the shell variable
$?; if an error is detected this way the shell variable APTEST is set equal to "previous com-
mand". Errors from earlier APSHELL scripts are caught by testing APTEST. At any time the
user may reset APTEST to null to avoid detonating later IFBOMBS.

The argument can be any UNICOS or APSHELL command.

Examples: IFBOMB
IFBOMB STASHFILE STACK
IFBOMB banner 'hey stupid'
IFBOMB banner 'file gone' >> output
IFBOMB APTEST=
IFBOMB STAGEIN CARDS filel B21006.INPUT
IFBOMB STAGEIN CARDS file2 B21006.INPUT \
"'DISP=(OLD,DELETE) '"
IFBOMB echo first IFBOMB test

Note the use of single and double quotes in the arguments of some of the examples. The syntax
of commands whose arguments include commands with arguments is not always straightforward.

POSTLIB Ibmfile1 Ibmfile2 ... Ibmfilen

This script permits users to supplement the default production load module library with modules
from user-specified libraries. It acquires UNICOS ar module libraries from the IBM disks and
places them in the directory $SCRATCH/xpost1ib thatis added to the end of the search path.
Modules in earlier named ibmfiles preempt modules in succeeding ibmfiles. Modules acquired
with additional POSTLIB commands (if any) will replace identically named modules existing in
$SCRATCH/xpostlib, but the position of $SCRATCH/xpost1lib will not be changed in
the search path. If there are no arguments, the script removes all modules from the xpostlib
directory.

This script along with PRELIB, PREPATHand POSTPATH change the search path when they
are called. Specifying POSTLIB with no arguments empties the xpost1ib directory, but
does not remove the directory from the search path. Specifying PREPATH or POSTPATH with
no arguments will restore the search path to its original state. The original search path includes a
directory /n1/b05432/cccc_modlib containing production load modules.
Example: POSTLIB C116.TEST.POSTLIBl1 Cl116.TEST.POSTLIB2

or equivalently,

POSTLIB C116.CRAY.TEST.POSTLIB2

POSTLIB C116.CRAY.TEST.POSTLIB1

=10

235

2.3.6

23.7

POSTPATH path1 path2 ... pathn

This script permits users to modify the search path during execution by adding directories at the
end. Any number of arguments is allowed. If there are no arguments, the script removes path
names appended by earlier calls (but does not remove paths defined by the shell variables
APPREPATH and APPOSTPATH) The original search path includes a directory
/n1/b05432/cccc_modlib containing production load modules.

The scripts PREPATH, PRELIB, and POSTLIB also change the search path.

Example: POSTPATH /nl/b54321/debug /nl/bl2345/other

PRELIB Ibmfile1 Ibmfile2 ... Ibmfilen

This script permits users to preempt the default production load module directory with modules
from user-specified libraries. It acquires UNICOS ar module libraries from the IBM disks and
places them in the directory $SCRATCH/xprelib that is added to the front of the search path.
Modules in earlier named ibmfiles preempt modules in succeeding ibmfiles. Modules acquired
with additional PRELIB commands (if any) will replace identically named modules existing in
$SCRATCH/xprelib, but the position of $SCRATCH/xprelib will not be changed in the
search path. If there are no arguments, the script removes all modules from the xprelib direc-
tory.

This script along with POSTLIB, PREPATHand POSTPATH change the search path when
they are called. Specifying PRELIB with no arguments empties the xprelib directory, but
does not remove the directory from the search path. Specifying PREPATH or POSTPATH with
no arguments will restore the search path to its original state.
Example: PRELIB C116.TEST.PRELIB1 C116.TEST.PRELIB2

or equivalently,

PRELIB C116.CRAY.TEST.PRELIB2
PRELIB Cl116.CRAY.TEST.PRELIB1
PREPATH path1 path2 ... pathn

This script permits users to modify the search path during execution by adding directories at the
front. Any number of arguments is allowed. If there are no arguments, the script removes path
names appended by earlier calls (but does not remove paths defined by the shell variables
APPREPATH and APPOSTPATH) The original search path includes a directory
/n1/b05432/cccc_modlib containing production load modules.
The scripts POSTPATH, PRELIB, and POSTLIB also change the search path.

Examples: PREPATH /nl/b54321/debug /nl/bl2345/other

il

23.8

STAGEIN type crayfile Ibmfile JcI jcI JeI

If the file crayfile does not already exist, this script brings it to the Cray from the IBM disks.
STAGEIN basically performs the same function as the UNICOS "acquire" command. The user
specifies the type of file viaa type keyword in the first argument and the Cray and IBM file
names in the second and third arguments. The fourth, fifth, and sixth arguments are optional
patches of JCL; if there are no JCL arguments, the script assumes that the IBM file is
DISP=(OLD, KEEP) .

If crayfile already exists STAGEIN does nothing. If crayfile does not already exist,
and the first attempt to fetch a file fails, the script tries a second time. When
type=LOADMODULE the script marks the load module executable.

When type=MODLIB the script extracts all members from an ar library into the directory speci-
fiedin crayfile. Ifthe specified directory does not exist, STAGEIN will create it.

type One of the following choices:
CARDS for BCD card-image data sets.
SEGLIB for relocatable object code.

CRAYBINARY for Cray-binary-format data sets.

IBMBINARY for IBM-binary-format data sets.

LOADMODULE for executable load modules.

ARLIB for ar load module libraries.

MODLIB for extracting all members from an ar library into the
directory specified in crayfile

crayfile The name of the file on the Cray, or a directory name if t ype=MODLIB.

ibmfile The name of the dataset on the IBM disks.

jel Optional JCL for the IBM file. The defaultis DISP=(OLD,KEEP)
if no JCL input is provided.
Examples: STAGEIN CARDS program.f B21006.FORTRAN
STAGEIN IBMBINARY data B21006.BINARY.DATA N
' (OLD,DELETE) '

STAGEIN CARDS input 'B21006.DECKS (GAMSORA) '

STAGEIN SEGLIB seglib.a B21006.CRAY.SEGLIB

STAGEIN MODLIB $SCRATCH/xprelib B21006.CRAY.SEGLIB

STAGEIN LOADMODULE ftu C116.CRAY.FTU.MODLIB

STAGEIN IBMBINARY STACK B21006.TEST.ISOTXS

STAGEIN SEGLIB seglib.a B21006.TEST.SEGLIB \
'DISP=OLD' 'VOL=SER=TEM401' 'UNIT=TEMP'

STAGEIN SEGLIB seglib.a B21006.TEST.SEGLIB 'DISP=0LD,\

VOL=SER=TEM401, UNIT=TEMP'

Note that the three JCL patches may be presented in any form which is recognizable as Unix
strings. The last two examples illustrate two ways that the same information can be presented.
The last example provides all the JCL information in onc string whereas the next to the last
example uscs three JCL input strings.

=12«

239 STAGEOUT type crayfile Ibmfile jcI eI |cI

This script sends a variety of types of files from the Cray to the IBM disks for storage or to hard-
copy output devices. The user specifies the type of file viaa type keyword in the first argu-
ment and the Cray and IBM file names in the second and third arguments. The fourth, fifth and
sixth arguments are optional patches of JCL; if there are only three arguments the script assumes
that disk files are DISP=(OLD,KEEP). When typeis OUTPUT or POSTSCRIPT the
third argument is interpreted as the destination (see the examples below); in these two cases if the
third argument is omitted the destination is picked up from APDEST or APLASERWRITER,
respectively.

If a previously executed APSHELL script has set an error condition (i.e. if the shell variable
APTEST is not null) STAGEOUT will not send a file to the IBM side of the system. Users can
override this behavior by setting APTEST to null before invoking STAGEOUT.

For (NEW,CATLG) files users must supply all the IBM JCL required to establish the file on the
IBM disks. The one exception to this rule is the DCB parameter; if one of the jcl patches con-
tains only the string DCB, then STAGEOUT will supply appropriate, default DCB parameters

(see the examples below).

type One of the following choices:
CARDS for BCD card-image data sets.
SEGLIB for relocatable object code.

CRAYBINARY for Cray-binary-format data sets.
IBMBINARY for IBM-binary-format data sets.
LOADMODULE for executable load modules.
ARLIB for ar load module libraries.
POSTSCRIPT for LaserWriter output.
METAFILE for Issco metafiles.

OUTPUT for printed output or microfiche.

crayfile The name of the file on the Cray.
»
ibmfile The name of the dataset on the IBM disks.
el Optional JCL for the IBM file. The defaultis (OLD, KEEP) .

Examples: STAGEOUT CARDS program.f B21006.FORTRAN
STAGEOUT IBMBINARY data B21006.BINARY.DATA
STAGEOUT POSTSCRIPT fort.98
STAGEOUT OUTPUT output ' (ANLVM,FICHE)'

STAGEOUT OUTPUT output VMFICHE

STAGEOUT LOADMODULE dif3d B21006.UDOIT.MODLIB L ¢
'DISP=(NEW,CATLG) , UNIT=TEMP' N
'SPACE=(TRK, (60,5) ,RLSE) ' N
'DCB*

STAGEOUT METAFILE popfil B21006.CHAQ9 .POPFIL \
'DISP= (NEW,CATLG) ,UNIT=TEMP' \
'SPACE= (TRK, (10,10) ,RLSE) ' \

'DCB'

STAGEOUT CARDS fort.7 B21006.CHA09.PUNFIL N
'DISP=(NEW,CATLG),UNIT=TEMP,SPACE=(TRK,(5,1),RLSE)' \
'DEB"

1S

23.10

2.3.11

STAGEOUT CARDS file2 B21006.INPUT \
'DISP=(NEW, CATLG) ,UNIT=TEMP' \
'SPACE=(TRK, (1,1),RLSE) ' \

'DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200) '
STAGEOUT OUTPUT output ' (ANLVM,B21006) "'
STAGEOUT OUTPUT output RADS12
STAGEOUT OUTPUT output PRO,FLASH=LINE

Note that when one uses STAGEOUT to an ANLVM node (e.g. (ANLVM,B21006) or
(ANLVM,FICHE)), it is not possible to make the output fetchable with APFETCH=YES.
APFETCH=YES does operate on files sent to ANLOS (e.g. RADS12, PR0, and VMFICHE).

STASHFILE crayflle

This script will create a temporary directory with a name unique to the current job
($SHORT/stash/nnnn.xmp, where nnnn is the job's NQS job number) and will save a file
crayfile in that directory. Multiple calls to STASHFILE will save additional files, all in the
same directory. All $SHORT files will remain on the Cray disks for 24 hours from their last
access. A line on the APSHELL header page tells users whether or not they have a "stash” direc-
tory created in a previous job. STASHFILE can be used with IFBOMB to save valuable files
in case of trouble (see the example below).

Examples: STASHFILE RTFLUX
IFBOMB STASHFILE STACK

XDIF3D crayfile, XFTU crayflle, XREBUS3 crayflle, XTWODANT crayfile, XVIM
crayflle, XVARI3D crayfile

The scripts XDIF3D crayfile, XFTU crayfile, XREBUS3 crayfile,
XTWODANT crayfile, and XVARI3D crayfile normally execute the production ver-
sions of the appropriate code. The single argument defines the file containing the BCD input for
the code; if there is no argument the code will take its input from the file defined by APINPUT.
The output of the code is directed to the file defined by APOUTPUT. Unix style output redirec-
tion must not be done on modular scripts as discussed in Chapter 4. Auxiliary output may also be
created on the file fort.10. Symbolic dump output from abnormal terminations is generated on
the file sysudump. In case of an abnormal termination, some of these scripts execute
STASHFILE for the potentially available files:

Code Files Saved

DIF3D RTFLUX, ATFLUX (version 1)
REBUS3 RFILES,STACK

TWODANT RTFLUX, ATFLUX (version 1)
VARI3D RTFLUX, ATFLUX (versions 1-3)
VIM none

RETALLY none

BANDIT none

FTU none

The scarch path always includes the dircctory /n1/b05432/ccce_modlib containing all modules
from the production library. Scripts PRELIB, POSTLIB, PREPATH, and POSTPATH may be

14 =

24

used to modify the search path prior to a call to one of the module execution scripts described in
this section.

Shell Programmer Shell Varibles

A number of "shell variables" are available which are primarily of interest to the shell programmer.

2441

2.5

APTEMP, APTEMP2, APTEMPX, APTEMPS, APTEMPS2, APTEMPSS5, etc.

These are temporary variables used within many of the APSHELL scripts. They are not intended
to be used to communicate between scripts. Programmers writing scripts that invoke APSHELL
scripts should take some care in defining temporary variables. For example, the production-code
scripts (e.g. XDIF3D, XFTU, etc.) use a temporary variable named APTEMPX $0 as not to
conflict with the APTEMPS variable that is set if they invoke STAGEIN.

Shell Programmer APSHELL Scripts

A number of scripts have been written which are primarily of interest to the shell programmer and
which are used in conjunction with scripts used for execution of the EP production codes such as DIF3D,
REBUSS3, etc.

25.1

252

253

APHEADER

This script collects and prints the header information to standard output and to the file identified
by APOUTPUT. The header information includes job name and numbers, user-specified time
and memory limits, the contents of a number of shell variables, and a list of APSHELL scripts.
APHEADER is invoked by the APSTART script and has no arguments.

APSTART file

This script is invoked by the APSHELL script residing in the public directory /usr/public.
APSTART changes directory to $SCRATCH, sets the initial values for a number of APSHELL
shell variables, adds the directories /n1/b21006/apshell and /n1/b05432/cccc_modlib to the search
path, issues the scpreroute (uscproute under UNICOS 4.0), starts the accounting deamon (jad in
UNICOS 3.0, ja in UNICOS 4.0), invokes APHEADER to display the header page on the output
files, sets a trap so that APWRAP is executed on exits, defines shell functions for all the
APSHELL scripts to assure that they are all executed in the same shell, and lists the contents of
the user's /n1 and /s1 directories and subdirectories. The optional argument is the name of any
script that the programmer wishes to be executed at the end of APSTART.

APWRAP code

This script is invoked automatically on exit because of a trap setin APSTART . It prints
accounting information to standard output and to the file identified by APOUTPUT, disposes
any APOUTPUT file to its intended destination, and cleans out the $SSCRATCH directory. The
optional argument is a condition code that is used as the argument in a final call to exit.

iS5k

Chapler 3

THE FILE TRANSFER UTILITY, FTU

a1 Introduction

The availability of onsite Cray, IBM, and VAX computers as well as teleccommunication access to
offsite CDC and Cray computers has created an atmosphere in which users are more and more interested
in making use of binary data filcs created on onc computer as input for codes which are to be exccuted on
another computer. Common examples arc the usc of post-processing codes which massage data gener-
ated by a large production-type calculation, or the use of cross section files generated on one computer
with production codes to be run on another compulcr. Post-processing codes have been used on the IBM
computers for many years. Users who now are running large production jobs on the more cost effective
Cray computer are often not interested in expending the cffort to convert the ancillary codes for use on
the Cray, but would rather prefer to continue running the inexpensive post-processing job on the IBM
computer using the binary files which were written on the Cray computer. ISOTXS microsopic cross sec-
tion datasets [3] which have been generated on the IBM computers are now required on the Cray com-
puter for a number of production codes. Similarly, in the future since the MC?-2 code [4] is being
implemented on the VAX computer, VAX generated ISOTXS datascts may also be used for the Cray pro-
duction jobs. These considerations have motivated the development of the File Transfer Utility, FTU,
which will afford portability for a varicty of binary datascts from onc type of computer to another.

3.2 FTU User Information

FTU, programmed in Fortran 77, is intended to provide binary file format conversion between the
Cray and the IBM, VAX, and CDC computers!, as well as the ability to copy datasets, without format
conversion, from a file on which a number of datasets have been "stacked". This latter capability is sim-
ilar to that provided by the READSTAK code [5] on the IBM computers which is employed to copy
datatsets from a so-called STACK file which has been written during a REBUS-3 [6] job. In addition to
the new format conversion capability, FTU processes 11 additional datascts not addressed by
READSTAK, and can provide BCD cquivalents and cdits for cach of the datascts. The BCD format
affords easy portability between computer systems, and the datasct edits provide a useful debugging tool
for code development activities or for users who would like to verily the contents of a binary datasct.

3.2.1 Flles Processed by FTU
Table 1 lists the datasets which are currently processed by FTU. The datascts DLAYXS, FIXSRC,

GEODST, ISOTXS, NDXSRF, PWDINT, RAFLUX, RTFLUX, RZFLUX, AND ZNATDN are standard
CCCC interface files [3]. The emphasized datascls arc those which are processed by the READSTAK

1 FTU has not as yet addressed format conversion lor CDC format datasets nor conversion [rom BCD 1o
binary format. -

- 16~

http://llio.se

code.

Table 1. Datasets Processed by FTU

AAFLUX ADJANG ANGSRC ATFLUX COMPXS DIRANG
DISFAC DLAYXS D3EDIT FIXSRC GEODST ISOTXS
LABELS NAFLUX NDXSRF NHFLUX PMATRX PWDINT
RAFLUX RTFLUX RZFLUX SFEDIT ZNATDN

3.22 FTU Input Conventions
The input to FTU is specified using free field format style and contains
file_name record_number output_format input_format precision

where file_name corresponds to one of the datasets in Table 1, record_number indicates the record on the
STACK file where the file is located, output_format may be CRAY, IBM, VAX, CDC, or BCD corre-
sponding to the binary file formats on the Cray, IBM, VAX or CDC computers, or to BCD format,
input_format may be CRAY, IBM, VAX, or CDC, again corresponding to the file formats on those
computers, and precision is SINGLE or DOUBLE correpsonding to 4-byte or 8-byte word length for
conversion from Cray to IBM. As implemented on the Cray, output_format is defaulted to ITBM and
input_format is defaulted to CRAY. The input sentinel precision is pertinent at this time only for the
FIXSRC dataset which is required in both single- and double-precision versions on the IBM computers.
If this field is left blank, single precision conversion is assumed consistent with the CCCC specification
for that dataset. [3). The file containing dataset file_name is always given the name STACK whether or
not it contains more than one of the datasets in Table 1.

On the Cray computer, if input_format is other than CRAY, then output_format must be CRAY.
When implemented on computers other than the Cray, FTU only provides the capability of copying the
datasets from a STACK file, without format conversion, or generating the equivalent BCD form for the
datasets. Thus, for example on the IBM computer, input_format may only be IBM and output_format
may only be IBMor BCD. Note that FTU may be used to convert IBM to VAX format, e.g., by first
converting from IBM to Cray format, and then from Cray to VAX format using the Cray implementation
of FTU.

If record_number is supplied as negative, FTU will provide an edit of the file being created. The
dataset edits as well as the structure of the BCD equivalents for the datasets are quite terse so that the uscr
will have to be familiar with a description of the file being processed in order to follow the FTU edit. The
datasets specified by the CCCC are documented in Ref. [3]. The other datasets in Table 1 which are pro-
cessed by FTU are documented in the Wylbur accessible partitioned dataset
B21006.FILES#filename where filename corresponds to any of the datasets in Table 1. When
converting individual datasets (that is when the STACK file contains only one dataset), record_number

would be 1 or -1.

=17~

3.23 Cray Execution of FTU

Figure 3 shows a typical Cray exccution of FTU in which an IBM format RTFLUX dataset [3] is
converted to a Cray format version, and the new Cray dataset is then converted to BCD equivalent format.
The first step also provides an edit of the dataset as it is being processed since record_number is negative.
The input uses the APSHELL conventions as specificd in (he chapter “APSHELL, UNICOS Scripts for
Batch Computing” on page 2.

//TORTFLUX JOB CLASS=C, REGION=300K, TIME=2, MSGCLASS=W
// EXEC CRAY
//SYSUT1 DD *

user=

QSUB -r TRTFLUX
QSUB -q day

QSUB -1T 15

QSUB -1M 1000Kw
QSUB -eo

QSUB

#

set -vx$S

APOUTPUT=output
APDEST=radsl2
APBANNER=trtflux
APLINES=10000
APSHELL
STAGEIN IBMBINARY STACK C116.1BM.TEST.RTFLUX
IFBOMB
cat > input <<EOF
RTFLUX -1 CRAY IBM
EOF
XFTU
cp RTFLUX DUMMY1
cp RTFLUX STACK
STAGEOUT CRAYBINARY DUMMY1 your.choice.dsname \
'DISP=(NEW,CATLG) , UNIT=TEMP, SPACE= (TRK, (10, 3) ,RLSE) ' \
'DCB"
cat > input <<EOF
RTFLUX 1 BCD CRAY
EOF
XFTU
STAGEOUT CARDS RTFLUX your.choice.dsname \
'DISP=(NEW,CATLG) , UNTT=TEMP, SPACE= (TRK, (10,3) ,RLSE) ' \
'DCB'
/*

Figure 3. Typical Cray IFTU Job Converting IBM to Cray Format

S

Users should remember that if more than one file is (0 be accessed using STAGEIN, a rm STACK
command must first be specified before subscquent STAGEINSs since STAGEIN docs nothing if the
cray file already exists.

Figure 4 shows a typical Cray exccution of I'I'U in which a VAX format ISOTXS datasct [3] is con-
verted to a Cray format version. The formal for feiching the VAX binary file differs noteably from that
required for fetching IBM binary filcs.

//VAXCRAY JOB CLASS=C, REGION=300K, TIME=2, MSGCLASS=W
// EXEC CRAY

//SYSUT1 DD *

user=

QSUB -r VAXCRAY
QSUB -q day

QSUB -1T 15

QSUB -1M 1000Kw
QSUB -eo

QSUB

#

set -vxS

APOUTPUT=output
APDEST=radsl2
APBANNER=vaxcray
APLINES=10000

. APSHELL
fetch STACK -mVG -fTB \

-t 'anlvg"BXXXXX password“::CC116:[BXXXXX]YOUR_CHOICE.DAT:l'
IFBOMB

cat >> output <<EOF
ISOTXS 1 CRAY VAX

EOF 5

XFTU

STAGEOUT CRAYBINARY ISOTXS your.choice.dsname \
'DISP=(NEW, CATLG) , UNIT=TEMP, SPACE= (TRK, (10, 3) ,RLSE) ' \
Liefe) =

/*

Figure 4. Typical Cray FTU Job Converting VAX to Cray Format

3.24 IBM Execution of FTU

A new catalogued procedure APPROC is also now availablc in the system library
$SYS1.USERPROC. AP which is uscd lor exceuting 1°I'U) on the IBM computers. Users should include
PROC = AP on theonthe //#MAIN card to access this catalogued procedure. APPROC follows
the Fortran 77 convention of using a filc name rather (han FTXXFOON for the DDNAME. A typical IBM
FTU job which reads a STACK file and prepares binary PWDINT and ZNATDN datascets, and a BCD

- 19-

equivalent of the RTFLUX dataset is shown below in Figure 5 as an cexample of using the new procedure.
Each of the datasets being processed is documented in Ref. 3], The PWDINT, RTFLUX, and ZNATDN
datasets are located respectively at record numbers 227, 118 and 13 on the STACK file. The ZNATDN
dataset is to be edited as it is being copied from the STACK file since the record_number is negative.

The APPROC catalogued procedure is listed in Appendix A. Note that when overwriting DD cards,
the supplicd cards must be in the order in which they appear in the PROC, just as is required when using
catalogued procedures which have numbered DD cards. The PATH symbolic parameter has been
defaulted to STP021 corresponding to the DIF3D code [2]. In Figurc 5, PATH was setto FTU and the
library from which the FTU code was obtaincd was specified using the PRELIB symbolic parameter.

//TORTFLUX JOB CLASS=W,REGION=1500K, TIME=2
//*MAIN LINES=50, PROC=AP
//*FORMAT PR, DDNAME=,DEST=RADS12
//*FORMAT PR, DDNAME=SYSUDUMP, DEST=PR0, FLASH=LINE
//*FORMAT PR,DDNAME=FT10F001, DEST=ANLVM.FICHE
// EXEC APPROC,PATH=FTU,
// PRELIB='C116.B05317.REBUS3.TEST.MODLIB'
//FT10F001 DD DUMMY
//PWDINT DD DSN=your.choice.dsname,DISP=(NEW,CATLG) ,UNIT=TEMP,
// VOL=SER=TEM401, SPACE= (TRK, (10, 3),RLSE),
// DCB=(RECFM=VBS, LRECL=X, BLKSIZE=6136)
//* BINARY DATASET PWDINT
//RTFLUX DD DSN=your.choice.dsname, DISP=(NEW, CATLG) ,UNIT=TEMP,
// VOL=SER=TEM401, SPACE=(TRK, (10,3),RLSE),
// DCB=(RECFM=FB, LRECL=80, BLKSIZE=3200)
//* BCD DATASET RTFLUX
//STACK DD DSN=existing.STACK.dataset,DISP=SHR
//* STACK DATASET CONTAINING FILES PWDINT, RTFLUX, AND ZNATDN
//ZNATDN DD DSN=your.choice.dsname, DISP=(NEW,CATLG) ,UNIT=TEMP,
// VOL=SER=TEM401, SPACE= (TRK, (10, 3),RLSE),
// DCB=(RECFM=VBS, LRECL=X, BLKSIZE=6136)
//* BINARY DATASET ZNATDN
//SYSIN DD *
PWDINT 227 1IBM IBM
RTFLUX 118 BCD IBM
ZNATDN -13 IBM IBM
/*

Figure 5. Typical IBM FTU Job

3.25 VAX Execution of FTU

Figure 6 shows a typical VAX COMMAND fil¢ for IFTU. If the input data in file INPUT.DAT;1
contains

ISOTXS 1 BCD VAX,

-20-

the binary ISOTXS datasct [3] in file 1 TEST_ISOTXS.DAT; 1 would be converted to BCD form.
COMMAND file in Figure 6 presumes that the FTU code is available in an FTU . EXE file.

The

$SET VERIFY

$SET DEFAULT [BXXXXX]

$ASSIGN OUTPUT.LIS SYSSouTrur
$ON ERROR THEN GOTO BOMB]
$TYPE INPUT.DAT;1

$ASSIGN INPUT.DAT;1 SYSSINPUT
$COPY TEST_ISOTXS.DAT;1 S'T'ACK.DAT;]
S$SRUN FTU

$DELETE STACK.DAT;1

$DIR

$SCHARGES

$SDEASSIGN SYS$OUTPUT

$SON ERROR THEN GOTO BOMB2
SDELETE OUTPUT.LIS;*

$DELETE STACK.DAT;1

SEXIT

$BOMBL1:

$ON ERROR THEN GOTO BOMB2
$SCHARGES

SDEASSIGN SYSS$SOUTPUT
$SCONVERT/APPEND OUTPUT.LIS FTU.LIS
$BOMB2 :

SDELETE OUTPUT.LIS;*

SDELETE STACK.DAT;1

Figure 6. Typical VAX FT'U COMMAND File

3.2.6

FTU Edits

Figure 7 shows an example of the edit gencrated by FTU for a trivial NDXSRF datasct [3]. When a
record consists of scveral different arrays, cach array is displayed scparately starting on a new line along
with the record identificr heading such as RECORD 1D, RECORD 2D, etc. The file identification
record is referenced as RECORD ID.

== EDIT OF FILE NDXSRF

RECORD ID
NDXSRF 6/20/88 1436.4
RECORD ID
1
RECORD 1D
6 1 6 6 6 0
RECORD 2D
pi T2 3 I4 IS I6
RECORD 2D
1 12 13 I4 15 16
RECORD 2D

0.0000E+00 0.0000E+00 0.0000E400 0.0000E+00 0.0000E+00 0.0000E+00

RECORD 2D

1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02 1.0000E+02

RECORD 2D
0 0 0 0 0 0

RECORD 2D
6 0 0 0

RECORD 2D
1 2 3 4 5 6

RECORD 2D
& 2 3 4 5 6

RECORD 3D

1.4304E+03 1.5209E+03 1.9555E+03 1.0000E-06 2.1728E+02 1.0864E+02
RECORD 3D
1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

RECORD 3D

Figure 7. FTU Generated Lidit of Datasct NDXSRF

3.27 FTU BCD Conversion

Figure 8 shows an example of the BCD equivalent form for the NDXSRF datasct shown in Figure 7.
As is the case for the dataset edits, when a record consists of scveral different arrays, each array is dis-
played scparately starting on a new line along with the record identifier suchas 1D, 2D, ete. The file
identification record is referenced as ID. Obviously, il the BCD cquivalent for a dataset is generated,

the user may simply list that file as an edit of the datasct rather than having FTU generate an edit of the
datasct.

ID NDXSRF 6/20/88 1436.4

1D il

1D 6 i 6 6 6 0

2’ 11 T2 I3 I4 5 16

2D T 12 13 14 o5 16

2D 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000000E+00 0.00000
0.00000000E+00

2D 0.10000000E+03 0.10000000E+03 0.10000000E+03 0.10000000E+03 0.10000
0.10000000E+03

2D 0 0 0 0 0 0

2D 6 0 0 0

2D i 2 3 4 5 6

2D 1 2 3 4q 5 6

3D 0.14304124E+04 0.15209446E404 0.19554993E+04 0.10000003E-05 0.21727
0.10863995E+03

3D 0.10000000E+01 0.10000000E401 0.10000000E4+01 0.10000000E+01 0.10000
0.10000000E+01

3D 1 o 1 1 1 1

Figure 8. BCD Equivalent for Datasct NDXSRF

3.3 Programming Information

FTU has been coded using Fortran 77 conventions and is organized into subroutines, each of which
is named for the file which is being processed together with a number of general utility subroutines.
Table 2 lists the FTU subroutines with a bricl description of the function of cach.

The various Cray utility routines utilized by FTU for data format conversion are listed in Table 3
along with a brief description of the function of cach. The detailed description of the calling sequence for
each as well as implementation information is given in Ref. [7]. The utilities with names beginning with
US are concerned with IBM format conversion, thosc beginning with VX with VAX format conversion,
and the FP and INT routines with CDC format conversion.

The programming conventions uscd in writing [1'U make extensive use of special "keyword" com-
ment cards surrounding machine-dependent Fortran cards. The coding between a keyword pair is sclec-
tively activated or deactivated by a simplc preprocessing FFortran program which places a blank or the
letter C in column 1 of the bracketed card images [10]. As a simple example, the following code frag-
ment is appropriate for short word machines, and could be converted for long word machines by deacti-
vating the CSW and activating the CLW kcywords.

2 R

Table 2. FTU Subroutines

Subprogram Function

MAIN Main driver for FTU

SELECT Reads the user input specifications, positions file
STACK, and reads, converts, and writes the file
identification record for the dataset being processed

FILEID Converts the file identification record and writes this
record for the dataset being processed

AAFLUX Processes the AAFLUX dataset

ADJANG Processes the ADJANG dataset

ANGSRC Processes the ANGSRC dataset

ATFLUX Processes the ATFLUX dataset

COMPXS Processes the COMPXS dataset

DIRANG Processes the DIRANG dataset

DISFAC Processes the DISFAC dataset

DLAYXS Processes the DLAYXS dataset

D3EDIT Processes the D3EDIT dataset

FIXSRC Processes the FIXSRC dataset

GEODST Processes the GEODST dataset

ISOTXS Processes the ISOTXS dataset

LABELS Processes the LABELS dataset

NAFLUX Processes the NAFLUX dataset

NDXSRF Processes the NDXSRF dataset

NHFLUX Processes the NHFLUX dataset

PMATRX Processes the PMATRX dataset

PWDINT Processes the PWDINT dataset

RAFLUX Processes the RAFLUX dataset

RTFLUX Processes the RTFLUX dataset

RZFLUX Processes the RZFLUX dataset

SFEDIT Processes the SFEDIT dataset

ZNATDN Processes the ZNATDN dataset

CNVRTC Converts character data to character data for the specified
format

CNVRTI Converts integer numbers to integer numbers for the specified
format

CNVRTR Converts floating point numbers to long or short word
floating point data for the specified format

BCDC Converts character binary records into BCD equivalent data

BCDI Converts integer binary records into BCD equivalent data

BCDR1 Converts single precision binary records to BCD equivalent data

BCDR2 Converts double precision binary records to BCD equivalent data

COPYFI Reads, converts, and writes records which are of uniform
type: all integer, all floating point, or all character data

PRECIS Checks datasets on short word length machines to determine
word length

VSRIN Reads VAX segmented binary records

VSROUT Writes VAX segmented binary records

-24 -

USCCTC

USCCTI

USDCTC

USICTC

USSCTC

USSCTI

VXDCTC

VXDCTI

VXSCTC

VXSCTI

VXICTC

VXICTI

FP6064

FP6460

INT6064
INT6460

Table 3. Cray Format Conversion Ulility Routines used by FTU

Converts IBM EBCDIC data to ASCII data

Converts ASCII data to IBM EBCDIC data

Converts IBM 64-bit double-precision floating-point numbers to
Cray single-precision numbers

Converts IBM INTEGER*2 and INTEGER*4 numbers to Cray

64-bit integer numbers

Converts IBM 32-bit single-precision floating-point numbers to
Cray 64-bit single-precision numbers

Converts Cray 64-bit single-precision floating-point

numbers to IBM 32-bit single-precision numbers

Converts VAX 64-bit D format numbers to Cray single-precision
numbers

Converts Cray 64-bit single-precision floating-point

numbers to VAX D format double-precision numbers

Converts VAX 32-bit single-precision floating-point numbers
to Cray 64-bit single-precision numbers

Converts Cray 64-bit single-precision floating-point

numbers to VAX F format single-precision numbers

Converts VAX INTEGER*2 or INTEGER*4 numbers to Cray

64-bit integers

Converts Cray 64-bit integers to VAX INTEGER*2 or

INTEGER*4 numbers

Converts CDC 60-bit single-precision floating-point

numbers to Cray 64-bit single-precision numbers

Converts Cray 64-bit single-precision floating-point

numbers to CDC 60-bit single-precision numbers

Converts CDC 60-bit integers to Cray 64-bit integers

Converts Cray 64-bit integers to CDC 60-bit integers

csw
DOUBLE PRECISION A,B

CSW

CLW

€ REAL A,B

CLW

Note that further comments concerning the usc ol keyword comment cards can be found in the next

chapter.

Due to the word length differences between the Cray and the IBM or VAX computers as well as the
special nature of VAX scgmented records [9], special 1/0 routines are required by FTU to accomplish the
data transfer. The Cray utilitics READP, WRITEP, and WRITE (7] arc used to read files which were
written on the IBM or VAX computers, and (o wrift files which are to be read on the VAX compuler.
READP and WRITEP provide the ability to rcad and write partial records, and WRITE is uscd to write
end-of-record marks for VAX format files. Subroutines VSROUT and VSRIN [8] are used to add and

o5 .

remove, respectively the extra segment control bytes required VAX segmented records [9]. 1BM format
files are written using ordinary Fortran WRITE statcments.

3.4 FTU Limitations

FTU is designed to be portable to Cray, IBM, VAX, and CDC computers and has been implemented
on the Cray X-MP under Unicos, IBM 3033 under MVS, and VAX 8700 under VMS.

When running on the Cray computer under Unicos, FTU permits binary data to be converted to the
format required by IBM, VAX, and CDC computers, and binary data formats which were written on these
computers to be converted to Cray format conventions. FTU has been tested for binary file format con-
version between the Cray and IBM systems for all of the datasets specified in Table 1 on page 17.
Conversion of only the binary ISOTXS datasct format has been tested between the Cray and VAX sys-
tems.

When running on computers other than the Cray, FTU docs not provide binary file format conver-
sion but does provide the option of gencrating a BCD equivalent form for the various datasets.

FTU provides the ability to copy binary files without format conversion from a file on which a
number of datasets have been "stacked" on any of the computers.

FTU has not as yet been implemented on a CDC system nor has testing of binary format conversion
between the Cray and CDC systems been undertaken.

-~ 206

Chapter 4

A MODULAR PROGRAMMING SYSTEM FOR ENGINEERING PHYSICS
DIVISION CODES

4.1 Introduction

Current Engineering Physics production codes exist in a modular environment on the IBM system
[10]. In such an environment major computational application programs are constructed using a collec-
tion of modules coupled together via a driver module (path-driver) and interface files. The path-driver
serially invokes other modules via a call to LINK (an IBM assembler routine). LINK permits argument
passing and an arbitrary, but nonrecursive, nesting of modules. The environment also permits special
utility modules (marked REUSable) to be permanently resident in memory. These special modules may
be LINKed by all other modules and provide useful data communication and synchronization functions.

The flexibility and economic advantage experienced with the current Engineering Physics modular
system on the IBM 3033 motivates the development of a Fortran 77 based modular system whose archi-
tecture is as machine independent as possible. This modular system uses a path-driver module to manage
the serial execution of application modules. Flexibility arises from module independence. Changes to a
single module are immediately available to all path-drivers invoking that module. The ability to preempt
production module libraries with alternate module libraries is a convenient and economic tool that pro-
vides specialized applications and simplifies code maintainence and development. This flexibility
increases file space requirements and, on systems that require file staging, staging costs. Modular systcm
storage overhead arises from the system routines loaded with each module regardless of its size. Storage
overhead for a comparable collection of standalone codes arises from the common set of building block
modules loaded with each code.

The remainder of this chapter describes a Fortran 77 modular system implemented on a CRAY
X-MP (UNICOS, CFT77), an IBM 3033 (MVS, FORTVS) and a VAX 8700 (VMS, FORT77).

4.2 Functional Requirements for a Fortran 77 based Modular System
The following functional requirements are needed by a modular system:
1. Atleast one level of Fortran modules must be callable from a Fortran path-driver module.
2. Communication between modules must be via interface files; argument lists are not allowed.
3. Output from all modules should be synchronized (i.e. appear in chronological order).
4, Dcbugging capabilities comparable to those available for standalone codes are desirable.
5. Animplementation that avoids or minimizes custom assemblecr code and features available on only

one machine is desirable for code portability.

i)

Requirements (1) and (2) minimize the machine-dependent features needed to implement a modular
system. Requirement (3) is obvious and requirement (4) is expected in any robust implementation. They
are mentioned to emphasize the fact that machine-dependent coding may be required to meet these goals.
Though not essential for modular systems, the portability requirement (5) has proved highly successful
for exporting Engineering Physics Division codes to different computers.

4.3 Implementation Overview

The modular system is comprised of Fortran 77 programs which fall into one of two functional cat-
egories, path-driver modules and application modules. A path-driver module controls the order (path) in
which modules are called. Some drivers (e.g. REBUS-3) contain elaborate logic, others (e.g. DIF3D)
contain little or no path-dependent logic. A utility subroutine LINKMD is called by the path-driver to
link to application modules.

All data communication between modules must be via interface files to improve code portability.
Application codes typically require several interface files. The file name MODCOM together with log-
ical unit number 1 is reserved for a special "system" interface file that passes essential "system" data (e.g
current page number) between modules. The utility subroutine MSYNCW and its entry MSYNCR syn-
chronize the path driver and application modules by respectively writing and reading "system" data on
MODCOM whenever execution control changes hands.

The two utility routines LINKMD and MSYNCW isolate the machine-dependent aspects of the mod-
ular system. LINKMD which must be called only by a path-driver module performs several functions. It
links a module (and invokes debug commands if needed), it synchronizes "system" data, and it ensures
the continuity of printed output. Two module names, M_INIT and M_END, are reserved for control scn-
tinels and do not correspond to actual modules. The path-driver must initialize the modular system by
calling LINKMD with module name M_INIT. Upon completion of the path-driver a final LINKMD call
with module name M_END is required to wrapup the modular system.

System synchronization calls on behalf of the path-driver module are made from subroutine
LINKMD. It calls MSYNCW prior to linking a module, and it calls MSYNCR just after the application
module exits. Upon entry, each applications module must immediately call MSYNCR to complete the
system synchronization. A call to MSYNCW just before exit from an application module reinstates the
current system synchronization data on MODCOM. MSYNCW and MSYNCR require a single sentinel
argument to indicate the calling module's identity (i.e. O indicates a path-driver, 1 indicates an application
module).

Chronologically ordered printed output from all modules is ensured by subroutines MSYNCW,
LINKMD and FINOUT. Two printed output files (units 6 and 10) are supported to accomodate
Engineering Physics Division codes that normally use two output streams. The default connections for
units 6 and 10 must be overridden in some systems (e.g. UNICOS and VMS) to achieve output conti-
nuity. The third utility subroutine FINOUT performs machine-dependent tasks (if needed) that flush the
path-driver output files just prior to path-driver termination. FINOUT is always called from LINKMD
and may also be called from an error handling routine just prior to a program controlled abnormal exit.
FINOUT uses the common block named MODFLG.

Examples of a path-driver and an applications module illustrating this modular system implementa-

tion are in Figure 9 and in Figure 10. Details of the implementation are explained in the sections that
follow.

-28 -

CDECK MODDRV
CF77
PROGRAM MODDRV
CF17
CF77-SW
G IMPLICIT DOUBLE PRECISION (A-H,0-2)
CF77-SW
CF66-SW
c IMPLICIT REAL*8 (A-H,0-2)
CF66-SW
COMMON /IOPUT/ NIN, NOUT, NOUT2
€
(e SET PRINTED OUTPUT FILE UNIT NUMBERS
e
CALL LINKMD ('M_INIT ')
c
e END PATH DRIVER INITIALIZATION
c
e ARGONNE EP CODES NORMALLY EMPLOY SCAN AND STUFF MODULES
4
CALL LINKMD ('SCAN L)
CALL LINKMD ('STUFF %)
(64
c NOW CALL APPLICATION MODULES (PATH LOGIC MAY APPEAR HERE ALSO) .
e
CALL LINKMD ('MOD1 ')
CALL LINKMD ('MOD2 1)
(52
(o] PATH DRIVER WRAPUP (Last statement in path driver)
C
CALL LINKMD ('M_END L)
STOP
END ’
Figure 9. Simple Path-Driver Module in a Modular System

4.4 Synchronization of Printed Output
Subroutine MSYNCR and entry MSYNCW must be called at the beginning and end of each applications

module (including "dummy" UDOIT modules), respectively, to obtain chronologically ordered printed
output from path driver modules and applications modules.

g9

CDECK MOD1
CRAY-MOD
PROGRAM MOD1
CRAY-MOD
CVMS-MOD
C PROGRAM MOD1
CVMS-MOD
CIBM-MOD
c SUBROUTINE MOD1
CIBM-MOD
CSA
(e SUBROUTINE MOD1
CSA
CF77-SW
Cc IMPLICIT DOUBLE PRECISION (A-H,0-2)
CF77-SW
CF66-SW
(o IMPLICIT REAL*8 (A-H,0-2)
CF66-SW
COMMON /IOPUT/ NIN, NOUT, NOUT2
CALL MSYNCR (1)

(o
(o] MODULE APPLICATION CODING BEGINS HERE
(o]
(o
(o}
c
C APPLICATION MODULE CODE ENDS HERE
c
CALL MSYNCW (1)
CSA
(o RETURN
Csa
CIBM-MOD
Cc RETURN
CIBM-MOD

END

Figure 10. Simple Applications Module in a Modular System

441 Synchronization of Printed Output In the UNICOS System

All printed output in the UNICOS implementation ultimately appears on two files, $APOUTPUT

(see Chapter 2) and fort.10. Aseach module is linked its stdout (unit 6) is redirected and concat-
enated to SAPOUTPUT; unit 10 is connected to fort.10. After an applications module exits
LINKMD concatenates the current contents of fort.10to fort10 where it remains until FINOUT
ultimately renames fort 10 to fort.10 just prior to the final exit from the path driver module.

-30-

The shell variable APOUTPUT in LINKMD is consistent with the APSHELL variable of the same
name. If APOUTPUT is not defined, the modular system uses a default name of output. The
APSHELL environment is not required to run the modular system.

In order to synchronize the printed output from the path-driver and application modules, LINKMD
connects (via an OPEN statement) two temporary file names path6 and path10 to units 6 and 10 in
the path driver. An ENDFILE statement deletes the contents of each file. The path driver must not
attempt to connect unit 6 to $APOUTPUT if chronologically ordered output is to be maintained. Prior to
invoking an application module, LINKMD disconnects path6 and path10. Upon entry to an appli-
cation module, a call to MSYNCR connects unit 10to fort .10 and clears fort.10. Unit6is
already connected to stdout by the module linking logic. Then MSYNCR copies any path driver output
on pathé and pathl0 to units 6 (stdout) and 10 (fort.10), respectively. Unit 1 is used for tem-
porary connections to path6 and pathl0. After MSYNCR exits the application module continucs
printing on units 6 and 10. When the application module exits, LINKMD concatenates the current con-
tents of fort.10 to fortl10. Then pathé and path1l0 are reconnected to units 6 and 10,
respectively, and cleared via an ENDFILE statement. Output created after the last application module has
exited is copied to the corresponding output files by subroutine FINOUT prior to final exit from the path
driver. FINOUT is also called by subroutine ERROR prior to an abnormal termination. In all cases
FINOUT ultimately renames fort10to fort .10 justprior to exit.

4.4.2 Synchronization of Printed Output In the VAX/VMS System

The printed output in the VAX/VMS system is synchronized by overriding the default connections to
units 6 and 10 (FOR006 and FORO10, respectively) with OPEN statements that include the specification
ACCESS=APPEND. Appropriate OPEN and CLOSE statements in LINKMD and MSYNCR before and
after module entrance and exit cause output to be concatenated on the same file in chronological order.

443 Synchronization of Printed Output on the IBM MVS System

Output synchronization occurs using the default connections FTO6F001 and FT10F001 for units 6
and 10, respectively. One side effect that is not yet understood occurs when a symbolic dump is triggered
from a called module. The normal symbolic dump appears to be followed by a second symbolic dump
that repeats the subset of routines that are part of the path driver module.

4.5 Module Linking

Fortran 77 has no provision for linking independent program modules. Consequently this machine-
dependent function is isolated in LINKMD, a Fortran 77 subroutine with one CHARACTER*8 argument.
A path-driver serially links a module by calling LINKMD with the desired upper case module name as
the argument. Module names M_INIT and M_END are reserved for control purposes. The first call to
LINKMD must use the name M_INIT to initialize the modular system. During this initialization call
variables NOUT and NOUT2 in common block IOPUT are set to unit numbers 6 and 10, respectively.
Calling LINKMD with module name M_END signals that an exit from the path-driver is imminent and
triggers modular system termination tasks. On systems where symbolic dumps are not automatically gen-
erated, LINKMD is also used to isolate machine-dependent invocations of symbolic debugging com-
mands that are triggered when an application module terminates abnormally.

2y

4.5.1 Module Linking In the UNICOS System

By convention module names in UNICOS must be lower case. Consequently, LINKMD calls sub-
routine SHFTLO to convert the module name in its argument from upper case to lower case and store it in
the CHARACTER*8 variable named MODULE. Modules are linked by calling the system function
ISHELL (7). A single argument of type character is used to pass a command string to a UNICOS bourne
shell (a "child" of the shell in which the current module is executing). The current process (i.e. the path
driver module) waits until the shell has completed executing the command string and receives the exit
status in the function value retumed by ISHELL (supplying an & after the command sent to ISHELL per-
mits asynchronous module execution, but this usage is not supported in the current modular implementa-
tion). Calls to ISHELL from LINKMD and FINOUT include combinations of the following UNICOS
command string examples below and may also include the Fortran 77 operator '/ ' which concatenates
character variables and character string literals.

. SAPTRACE

Optional user supplied shell commands may be put into shell variable APTRACE for diagnostic
purposes (e.g. see Figure 13). Commands in APTRACE are executed prior to every module invo-
cation if APTRACE has been exported (export typically done by applications scripts).

. MODULE // '>> ${APOUTPUT:-output}"

The MODULE command invokes the desired module. The current implementation redirects and
concatenates stdout from MODULE to $APOUTPUT (defaultis output). The shell variables
APTRACE and APOUTPUT are available to the shell spawned by ISHELL only if they have been
exported prior to executing the path driver module. The applications scripts like XDIF3D include
the appropriate export commands.

. ‘cat fork .10 >> fortll *

Upon exit from MODULE, the printed output for logical unit 10 (default filename fort.10) is
concatenated to fort10 from fort.10.

. '‘debug; -B- -d 20,5,5 -8 “*hash * . // MODULE// "' hashal:igrepi iy
MODULE // ' | cut -£f3' >> sysudump ; '

The debug command concatenates symbolic dump output onto a file named "sysudump" using
the file named "core" that is generated when a module terminates abnormally. The hash com-
mands are used to determine the search path directory where MODULE is found. LINKMD
invokes debug whenever ISHELL returns a nonzero return code following an application module
invocation.

. 'cat pathé6 >> ${APOUTPUT:-output} ; cat pathl0 >> fortl0 '

Just prior to the final exit from a path driver append pathéto $APOUTPUT and append
pathlOto fortl0.

\ 'rm path6é pathl0 ; mv fortlO0 fort.10 °

Just prior to the final exit from FINOUT remove auxiliary output files path6 and pathl0,
then rename fort10 to fort.10.

=430

4.5.2 Module Linking In the VAX/VMS System

Module linking is accomplished by writing a VMS DCL command file to invoke the desired module
then spawning a subtask that executes the command file. The DCL text required to execute a module is
SRUN MODULE where MODULE denotes the name of the module to be executed. LINKMD creates the
appropriate command file text and passes it to subroutine VSPAWN which writes the command file
(PATH_SPAWN.DAT) and spawns a subtask by calling the LIBSSPAWN run-time system function. A
logical unit number for the command file is obtained by system function LIB$GET and later released by
LIBSFREE.
453 Module Linking In the IBM MVS System
Load modules in the IBM MVS system are linked from LINKMD by calling assembler routine LINK [1].

The 8 character module name is passed as the only argument to LINK. Although LINK permits subrou-
tine arguments in the call, the modular system machinery does not permit or use it.

4.6 Local Code Conversion Considerations for the New Modular System
The rudiments of the modular system are illustrated by the simple path-driver module listed in Figure 9
on page 29 and the simple applications module listed in Figure 10 on page 30.
4.6.1 CONVTCD Keyword Changes

Several changes to our current coding practices [10] are required by the new modular implementa-
tion. The REUSable modules SYS001 thru SYS005 have been eliminated. The keyword table for the
CONVTCD utility now includes a new keyword CMOD to designate a modular implementation. CMOD
and CSA are mutually exclusive keywords. As a consequence the past practice of using CANL to denote
IBM modular must now be changed to CMOD-F66. CANL must now be qualified with CIBM, CUNC or
CVMS when code modifications only apply to a particular Argonne computer.

The keyword sentinels now required by CONVTCD for the four possible modular systems are:
1. IBM66/MVS

CSW CILV CENT CIBM CANL CF66 CDYN CMOD
2. IBM77IMVS

CSW CILV CENT CIBM CANL CF77 CDYN CMOD
3. CRAY/UNICOS

CLW CILV CENT CRAY CANL CF77 CDYN CMOD CVEC CSEG CUNC
4. VAX/VMS

CSW CILV CENT CVMS CANL CF77 CDYN CMOD

i

4.6.2 Path-Driver Changes

All Fortran 77 path-driver modules should include PROGRAM statements for unique identification
in an object code library. Module linking calls must be made via a call to subroutine LINKMD which has
one argument, a CHARACTER*8 variable containing an upper case module name. As illustrated in
Figure 9 on page 29 each path-driver initializes the modular system by calling LINKMD (with argument
'M_INIT'). The initialization sets NOUT and NOUT?2 to 6 and 10, respectively. NOUT is the logical unit
number for the primary printed output stream, NOUT?2 is the logical unit number for the secondary output
stream, and NIN is the logical unit number for the standard input file. A call to LINKMD (with argument
'M_END") is required just before the final exit from the path-driver. M_INIT and M_END are reserved
words that are used as sentinels to control modular system initialization and wrapup. The modules SCAN
and STUFF must now be linked from the path driver module. Prior practice required direct calls to
SCAN and STUFF dummy drivers that linked to modules SYS001 or SYS002.

4.6.3 Applications Module Changes

A keyword change is also required in the driving subprogram of each applications module.
Depending on the system and the type of implementation (modular or standalone) the driving subprogram
of a module must begin with either a SUBROUTINE statement or a PROGRAM statement. A corre-
sponding appropriate termination statement (RETURN or the absence of a RETURN) is also required in
the driving subprogram. As illustrated in Figure 10 on page 30, UNICOS and VAX VMS modular sys-
tems require a PROGRAM statement. All other implementations currently require a SUBROUTINE
statement.

Subroutine calls to MSYNCR and MSYNCW must also appear in the driver of every applications
module including dummy UDOIT modules. MSYNCR should be the first executable statement and
MSYNCW should be the last statement executed just before exit from the module. Because MSYNCR
initializes TIMER and the common block variables (NOUT=6 and NOUT2=10) in /IOPUT/ and
(KOUT=6 and KOUT2=10) in /PTITLE/, applications modules no longer need perform these initializa-
tions. The variable NIN is initialized from the path driver and passed to applications modules via the
MODCOM system interface file. Output is hardwired to units 6 and 10 in MSYNCR to reduce the poten-
tial for printed output loss in the event of an abnormal termination. Applications modules can still tempo-
rarily disable output to units 6 or 10 by setting the appropriate local common block variables to 0 after the
call to MSYNCR.

4.6.4 Changes to Utllity Subroutines In the Existing Librarles
. ARCBCD

Member ARCBCD contains source for both the SCAN and STUFF modules and was changed to
include appropriate PROGRAM, SUBROUTINE and RETURN statements in the SCAN and
STUFF routines. Calls to subroutines MSYNCW and MSYNCR were also added. The modules
SYS001 and SYS002 were eliminated. Shared data retained in memory by SYS001 is now
obtained by MSYNCR from MODCOM.

. DOPC, DRED, LUNREF AND MAKDDN
Logical unit number 1 has been added to the list of reserved special purpose unit numbers. It is
used by LINKMD and MSYNCR for temporary connection to MODCOM while reading and

writing "system" synchronization data and for temporary connection to path6 and pathl10
while synchronizing printed output on the UNICOS implementation. CONVTCD keywords

B VI

CF77-SA were changed to CF77 in order to permit dynamic logical unit number allocation with
modular and standalone implementations. Special coding bracketted by CF77-ANL was inacti-
vated by comment cards since the CANL keyword no longer denotes the IBM modular implemen-
tation. Two hybrid code systems TWODANT and DPT are affected by this change.

ERROR

A call to the new utility routine FINOUT was added to ERROR to empty and delete the path driver
output files in the event a fatal error exit is detected by subroutine ERROR when it is called from
the path driver.

LINES AND PGCNTR

Logic was added to PGCNTR to permit reinitialization of the common block CPGCNT used by
LINES and PGCNTR. The reinitialization is done via calls to PGCNTR (with IENTRY=3) from
MSYNCR whenever a module is entered or a path-driver is reentered. Common block CPGCNT
and the argument list to PGCNTR were revised as a consequence. Reusable module SYS004 is
eliminated. Shared data for CPGCNT is now obtained by MSYNCR from MODCOM.

SEEK

Logic associated with the SEEK initialization (SEEK option 3) was revised to permit SEEK reini-
tialization whenever a module was entered or the path-driver reentered upon exit from a module.
Reinitialization is triggered by a SEEK option 3 call whenever it is accompanied by a dataset name
of RESEEK in argument 1. Reusable module SYS003 is eliminated. Shared data formerly held by
SYS003 is obtained by MSYNCR from MODCOM.

TIMER

A number of timing functions previously surrounded by CANL CONVTCD keywords were
changed to CANL-IBM to permit the more general usage of CANL. A subroutine SECOND for
IBM F77 modular systems was added to the TIMER librarian module. The reusable module
SYS005 is eliminated for IBM F77 modular implementations. The new subroutine SECOND uses
the TLEFT assembler routine to compute elapsed time. An entry TSYNC was added to TIMER to
synchronize timing data when separate clocks are used in'the path-driver and applications modules.

Modular Library Malntenance and Applications

Summarized in this section will be typical examples of how modular libraries are maintained for the

systems currently supported.

Modular Library Malntenance on the UNICOS System

The Cray UNICOS modular production libraries stored on the IBM disks are:

C116.CRAY.SYSLIB
C116.CRAY.SEGLIB

C116.CRAY.OVERLAY

L35

C116.CRAY.SYSLIB and C116.CRAY.SEGLIB are object libraries managed via the UNICOS bld
command. Executable load modules are created from these object libraries using the UNICOS segldr
command. Overlayed modules require a segldr directives file to specify the overlay tree structure.
Each directives file is stored in C116.CRAY.OVERLAY, a PDS library file on the IBM disks with a
member name ending with TR (e.g. GNIP4CTR) (see Figure 11).

The UNICOS command ar is used to manage libraries of UNICOS load modules when they are
stored on the IBM disks, in a manner similar to the way the UNICOS bld command is used to manage
object code libraries. The heavily used Engineering Physics production modules reside permanently on
the Cray as files in the directory /n1/b05432/cccc_modlib. The directory is included in the search path by
APSTART (see Chapter 2) so that it is available to all module execution scripts when using APSHELL.
Figure 12 is a script fragment that compiles and links a typical load module (e.g. GNIP4C) and replaces
the load module in a module library.

TREE

D4 (D4C1,D4C2,D4C3,D4C4,D4CS)
ENDTREE
SEGMENT=D4
MODULES=HMG4C
SEGMENT=D4C1
MODULES=0VL1
SEGMENT=D4C2
MODULES=0VL2
SEGMENT=D4C3
MODULES=0VL3
SEGMENT=D4C4
MODULES=0VL4
SEGMENT=D4C5
MODULES=0VL5
ENDSEG

Figure 11. Typical segldr Overlay Tree Directives File

4.7.2 Modular Applications

Figure 13 is a UNICOS script fragment illustrating typical production use of load module libraries.
The PRELIB and POSTLIB commands may be used to include additional load module libraries from the
IBM disks to the search path. The PREPATH and POSTPATH commands may be used to include addi-
tional existing UNICOS directories to the search path. As noted in the command descriptions for
PRELIB and POSTLIB in Chapter 2, the order in which module libraries and directories are specified
indicates their precedence. For example, to override a dummy UDOITn module in
C116.CRAY.MODLIB with a UDOITn from an altemate library C116.CRAY.UDOIT.MODLIB, a user
must specify

PRELIB C116.CRAY.UDOIT.MODLIB

-36-

Following the completion of the load module script (XDIF3D) the search path remains in its modi-
fied state unless restored by appropriate PRELIB, POSTLIB, PREPATH or POSTPATH commands.

STAGEIN CARDS source.f B20245.FORTRAN . SOURCE

STAGEIN CARDS segtree B20245.CRAY .MODULAR.OVERLAY (GNIP4CTR)
STAGEIN SEGLIB syslib.a C116.CRAY.MODULAR.SYSLIB

STAGEIN SEGLIB seglib.a C116.CRAY.MODULAR.SEGLIB

truncate directives before sequence numbers in cols. 73-80
mv segtree segtreel
cut -cl-72 segtreel > segtree; rm segtreel

cft77 -e DIxs source.f
IFBOMB echo cft77_errors
cat source.l >> output
rm source.l source.f

bld rv seglib.a source.o >> output
IFBOMB
bld tv seglib.a ; rm source.o

STAGEOUT SEGLIB seglib.a C116.CRAY.MODULAR.SEGLIB /
'UNIT=PERM, SPACE=(CYL, (14,1)),DISP=(NEW,CATLG) ' 'DCB'
IFBOMB

segldr -o gnip4c -e GNIP4C -M output -i segtree \
-D "ECHO=ON; CASE=MIXED;MAP=ADDRESS; USX=WARNING;" \
-1 ./seglib.a,./syslib.a, $ANLUTIL \
/dev/null >> output
IFBOMB
chmod a+rx gnipdc
»
replace gnip4c module in the production module directory
cp gnip4c /nl1/b05432/cccc_modlib
IFBOMB
1s -1 /nl1/b05432/cccc_modlib

replace gnipd4c module in a library named modlib; 1list its directory
#STAGEIN ARLIB modlib Cl116.CRAY.MODULAR.MODLIB

#ar ru modlib gnip4c

IFBOMB

#ar tv modlib

#STAGEOUT ARLIB modlib (C116.CRAY.MODULAR.MODLIB

Figure 12. UNICOS Script Fragment for Updating a MODLIB

Uiz 1y A8

Specify list of ar module libraries located on the IBM disk farm
to be PRELIBed or POSTLIBed (if needed) into the search path.

PRELIB C116.CRAY.DEBUG.MODLIB
PRELIB C116.CRAY.UDOIT.MODLIB
POSTLIB C116.CRAY.GRAPHIC.MODLIB

STAGEIN CARDS input B20245.J0BX.INPUT
IFBOMB

Following line is optional. It is useful to trace module execution
while debugging. Other commands could also be supplied here.
APTRACE=' set -vxS '

Do not redirect output for a path driver module. Printed output is
ultimately directed to $APOUTPUT (default is output) and fort.10.
Symbolic dump output appears on the sysudump file.

Execute the APSHELL script XDIF3D which invokes the DIF3D code.

XDIF3D exports the shell variables APOUTPUT and APTRACE.

XDIF3D input

B

Concatenate symbolic dump trace (if any) and fort.10 to $APOUTPUT
[-r sysudump] && cat sysudump >> $APOUTPUT

cat fort.10 >> $SAPOUTPUT

IFBOMB

Figure 13. Sample Production Job Script Fragment for UNICOS Modular System

bl

ACKNOWLEDGEMENTS

The authors would particularly like to thank Jeff Doak of Cray Research for help in understanding
the Cray/Unix system, and Alan Hinds for his assistance in implementing the modular system. Many
other people from the Computing and Telecommunications Division also contributed their advise and
assistance to this work.

=0

10.

REFERENCES

L. C. Just, H. Henryson, II, A. S. Kennedy, S. D. Sparck, B. J. Toppel, and P. M. Walker, "The
System Aspects and Interface Data Sets of the Argonne Reactor Computation (ARC) System",
ANL-7711, Argonne National Laboratory (April 1971).

K. L. Derstine, "DIF3D: A Code to Solve One-, Two-, and Three- Dimensional Finite-Difference
Diffusion Theory Problems", ANL-82-64, Argonne National Laboratory (April 1984).

R. Douglas O'Dell, "Standard Interface Files and Procedures for Reactor Physics Codes, Version
IV", UC-32, Los Alamos National Laboratory (September 1977).

H. Henryson II, B. J. Toppel, and C. G. Stenberg, " MC?-2 : A Code to Calculate Fast Neutron
Spectra and Multigroup Cross Sections", ANL-8144, Argonne National Laboratory (June 1976).

B. J. Toppel, Private Communication.

B. J. Toppel, "A Users Guide for the REBUS-3 Fuel Cycle Analysis Capability", ANL-83-2,
Argonne National Laboratory (March 1983).

"Programmers's Library Reference Manual", SR-0113C, Cray X-MP and Cray-1 Computer
Systems, Cray Research,Inc. (June 1987).

Jeff Doak, Private Communication.
"VAX/VMS User's Manual", Digital Equipment Corporation (April 1986).
C. H. Adams, K. L. Derstine, H. Henryson II, R. P. Hosteny, and B. J. Toppel, "The Utility

Subroutine Package used by Applied Physics Division Export Codes", ANL-83-3, Argonne
National Laboratory (April 1983).

- 40 -

Appendix A
IBM CATALOGUED PROCEDURE APPROC

The APPROC catalogued procedure shown in Figure 14 represents a generic procedure intended for
use with any of the EP production codes which have been modified to make use of Fortran 77 conven-
tions. In particular, various symbolic parameters are provided for the various datasets with which the user
may be concerned.

41

//APPROC PROC

Vil
/1
//
/1
/7
//
//
(il
ol
1/
v/
/1
/1
M
//
A4
A
/1
/74
//
/4
//
/il
/1
Ll
Vil
//
1i*
Vil sl
il
1/*
i
4
e
i
Vi b
A
T
ld %
/%
/il
1/ *
77
L/*
4
Li*
i
(L=

AACYL=5, AADSP="' (,DELETE) ', AAFLUX="'&AAFLUX',
ATCYL=5,ATDSP="' (,DELETE) ',

ATFLUX="'&ATFLUX', ATVOL=,DEST="'*"', DEST2=F, DMPDEST=F,
BLKTYP=CYL,CMPDSP="' (,DELETE) ', COMPXS="'&COMPXS"',
CXSCYL=3,DIFDSP="' (,DELETE) ' ,DIF3D="&DIF3D"',

DLADSP="' (,DELETE) ', DLAYXS="'&DLAYXS',D3DSP="' (,DELETE) ',
D3EDIT='&D3EDIT',FDCCYL=20,FLXCYL=1,

GEODSP="' (,DELETE) ', GEODST="'&GEODST', HALFTRK=6136,
ISOCYL=1, ISODSP="' (MOD, KEEP) ', ISOVOL=,
ISOTXS="'&ISOTXS', LABDSP="'(,DELETE) ', LABELS="'&LABELS",
MODEDCB="' (RECFM=F, BLKSIZE=23220) ',
MODLIB1='SYS1.DUMMYLIB',

MODLIB2='C116.CCCC.MODLIB',
NACYL=5,NADSP="' (,DELETE) ', NAFLUX="'&NAFLUX', NAVOL=,
NDXDSP="' (,DELETE) ', NDXSRF="'&NDXSRF',
NHCYL=5, NHDSP="' (,DELETE) ',
NHFLUX="'&NHFLUX', NHVOL=, PATH='STP021",

PMADSP="' (,DELETE) ', PMATRX="'&PMATRX"',
POSTLIB='SYS1.DUMMYLIB',PRELIB='SYS1.DUMMYLIB',
PSICYL=5,PSUCYL=3,PWDDSP="' (,DELETE) ', QRTRTRK=3064,
RACYL=5, RADSP="' (,DELETE) ', RAFLUX="'&RAFLUX"', REGN=1000K,
RTCYL=5, RTDSP="' (,DELETE) ', RTFLUX="'&RTFLUX",

RTVOL=, TIMLIM=' (600,0) ',RZDSP=" (,DELETE) ',
RZFLUX="'&RZFLUX', SFDSP="' (,DELETE) ', SFEDIT="&SFEDIT",
SRFCYL=12, STADSP="' (,DELETE) ', STACK="&STACK',
TWELTRK=1016, UNITS=BATCHDSK, UNITSCR=SASCR,
XSISO=NULLFILE, XSISO2=NULLFILE, XSIVOL=, XSI2VOL=,
ZNADSP="' (,DELETE) ', ZONCYL=1

%k Kk K ok ok ok ok ke k kK ok ok ok ok ok ok ok ok ok ke ok ke ko k ok ok ok ok ok ok ok ok ok ok ok ok ke ok ke ok ok ok ok ok ok ok ok ok k ok ok ok ok ok k.

*
*
*
*

*

CATALOGUED PROCEDURE FOR ENGINEERING PHYSICS DIVISION %,
FORTRAN 77 CODES. *%% 11/29/88 k% S

*

e ok ok ok ko ke ok ok Kk ok ke ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ke ok e ok ok ok ok ke ok ok ok ok K ok ok ok ok k kR ok ok K

CYLINDER ALLOCATIONS ARE FOR 3330 DEVICES

IF OTHER DEVICES ARE USED CHANGE PROC PARAMETER

MODEDCB= (RECFM=F, BLKSIZE=XXXXXX) TO THE APPROPRIATE
BLOCK SIZE (13030 ON 3330, 19069 ON 3350, 23220 ON 3380).
NOTE THAT THE NUMBER OF TRACKS PER CYLINDER ON THESE
DEVICES IS 19 ON 3330, 30 ON 3350, AND 15 ON 3380.

Kohkkkkkdkkkhkkhkhkkhkkkkkhkkk ok k ok kA k Ak k kA kkkkk kA k Ak Ak kkk Ak kkkk kA kk k k kX k&

PARAMETER DEFAULT VALUE
PATH STP021 PROGRAM NAME (EXEC)
TIMLIM (600,0) STEP TIME LIMIT (EXEC)

Figure 14. 1BM Catalogued Procedure APPROC

-425:

//* REGN 1000K STEP REGION STZE (3XEC)

/1% MODLIB1 S¥S1.DUMMYLT* SECOND STETD L'BRRANY (STEPLIB)
//* MODLIB2 C116.CCCC.MOPLIB CCCC SYSTEM LIBRARY (STEPLIB)
l/* PRELIB SYS1.DUMMYLIBE FIRST STEP LIBRARY (STEPLIB)
/1* POSTLIB SYS1.DUMMYLIB LAST STEP LIBRARY (STEPLIE)
/1% DEST * OUTPUT DEST. (FT06)

{1 DEST2 F OUTPUT DESTINATION (FT10)

//* DMPDEST F ROUTE DUMP TO FICHE (SYSUDUMP)
L AACYL 5 NO. OF CYL. FOR RAFLUX

l1* ATCYL 5 NO. OF CYL. FOR ATFLUX

//* RARDSP (,DELETE) DISPOSITION OF AAFLUX

//* ATDSP (,DELETE) DISPOSITION OF ATFLUX

//* ATFLUX &ATFLUX DSN FOR DATASEL ATFLUX

//* ATVOL = —————- VOLUME FOR ATEI.UX

//* CMPDSP (,DELETE) DISPOSITION OF COMPXS

//* DIFDSP (,DELETE) DISPOSITION OF DiF3D

//* DLADSP (,DELETE) DISPOSITION OF DLAYXS

//* D3DSP (,DELETE) DISPOSITION CF D3EDIT

/1* GEODSP (,DELETE) DISPCSITICN OF GEODST

//* ISOCYL 1 NO. CYL. FOR ISOTXS

//1* ISODSP (MOD, KEEP) DISPOSITION OF ISOTXS

it ISOTXS &ISOTXS DSN FOR DATASEI .JOTXS

/1% ISOVOL —————- VOLUME FOR ISOTXE

fI* LABDSP (,DELETE) DISPOSITION OF LABELS

//* NADSP (,DELETE) DISPOSITION OF NAFLUX

//* NAFLUX &NAFLUX DSN FOR NAFLUX

//* NAVOL = —————- VOLUME FOR NAFLUX

//* NDXDSP (,DELETE) DISPOSITION OF NDXSRF

1/* NHCYL 5 NO. OF CYL. FOR NHFLUX

//* NHDSP (,DELETE) DISPOSITION OF NHFLUX

//* NHFLUX &NHFLUX DSN FOR NHFLUX

//* NHVOL = —————- VOLUME FOR NHFLUX

//* PMADSP (,DELETE) DISPOSITION OF PMATRX

//* PWDDSP (,DELETE) DISPOSITIQN OF PWDINT

//* RACYL 5 NO. OF CYL. FOR RAFLUX

L% RTCYL 5 NO. OF CYL. FOR RTFLUX

/7% RTDSP (,DELETE) DISPOSITION OF RTFLUX

//* RTFLUX &RTFLUX DSN FOR DATASET RTFLUX

//* RIVOL = = =====- VOLUME FOR RTFLUX

//* SRFCYL 12 NO. OF CYL. FOR SURF. FLUXES
//* XSISo NULLFILE DSN FOR DATASET XS.ISO FILE 1
[/* XSI502 NULLFILE DSN FOR DATASET XS.ISO FILE 2
//* XSIVOL —————- VOLUME FOR XS.ISO FILE 1

l1* XSI2VOL = --==-- VOLUME FOR XS.ISO FILE 2

J/*

11* THE FOLLOWING NINE PARAMETERS DEFINE BLOCK ALLOCATIONS

[1* AND DCB'S FOR AUXILIARY FLUX, FDCOEF AND ZONMAP DATASETS

L *

//* MODEDCB (RECFM=F, BLKSIZE=23220) DCB FOR DIRECT ACCESS FILES

Figure 14. 1BM Catalogued Procedure APPROC (cont'd.)

S

//* BLKTYP CYL ALLOCATION BY CYLINDERS

l/* SEC 1 SECONDARY ALLOCATION ON DA DATASETS
//* FDCCYL 20 NO. OF CYL.S FOR FDCOEF DATASET

//* FLXCYL 1 NO. CYL. FOR 1 GROUP FLUX FILES

//* PSICYL 5 NO. CYL.S FOR FLUX DATASETS

[/% PSUCYL 3 NO. CYL.S FOR ADJ. UPSCAT. FLUX

//1* ZONCYL 1 NO. CYL.S FOR ZONMAP

//* CXSCYL 3 NO. CYL.S FOR CXSECT

Li*
//* THE FOLLOWING SIX PARAMETERS DEFINE UNIT AND BLKSIZE FOR
//* A VARIETY OF DATASETS

L

//* HALFTRK 6136 HALF TRACK BLOCKING

//* QRTRTRK 3064 QUARTER TRACK BLOCKING

//* TWELTRK 1016 TWELFTH TRACK BLOCKING

//* UNITS BATCHDSK GENERIC UNIT NAME

(i UNITSCR SASCR GENERIC UNIT NAME

hil®

[)% KRk kokkok Kok k ok Kok ok Kok Kk K Kok ok ok kR ok Ak ok ok ok ok ok ok ok Rk Kk Rk Kk Kk Kk Kk K
(il e

//APPROC EXEC PGM=&PATH, TIME=&TIMLIM, REGION=®N
//STEPLIB DD DSN=&PRELIB,DISP=SHR

// DD DSN=&MODLIB1,DISP=SHR

// DD DSN=&MODLIB2,DISP=SHR

i DD DSN=&POSTLIB,DISP=SHR

(s

l/* SYSTEM DATASETS

[/*

//FT04F001 DD UNIT=SASCR,SPACE=(TRK, (10,10))
1£* DISSPLA SCRATCH FILE
//FTOS5F001 DD DDNAME=SYSIN

l/* BCD INPUT.

//FT06F001 DD SYSOUT=&DEST,DCB=(RECFM=FBA, LRECL=133, BLKSIZE=1596)
[[* PRINTED OUTPUT.

//FT08F001 DD DISP=SHR,DSN=SYS1.DISSPLA.DATA, LABEL=(,,, IN)

L% DISSPLA FONT FILE

//FT10F001 DD DCB=(RECFM=FBA, LRECL=133,BLKSIZE=1596), SYSOUT=&DEST2
' ALTERNATE PRINT FILE.

//FT61 DD DSN=&XSISO,DISP=SHR,UNIT=&UNITS, VOL=SER=&XSIVOL

[[* ARC MICROSCOPIC ISOTOPE CROSS SECTION XS.ISO FILE 1
//FT61F002 DD DSN=&XSIS02,DISP=SHR,UNIT=&UNITS, VOL=SER=&XSI2VOL
[/* ARC MICROSCOPIC ISOTOPE CROSS SECTION XS.ISO FILE 2
//FT62 DD DSN=* .FT61F002,DISP=SHR, VOL=REF=*.FT61F002

//* ARC MICROSCOPIC ISOTOPE CROSS SECTION XS.ISO FILE 2
//AAFLUX DD DSN=&AAFLUX,DISP=&AADSP, SPACE=(CYL, (§AACYL,1)),

1l UNIT=&UNITS,VOL=SER=&ATVOL,

// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

/1% CCCC ADJOINT ANGULAR FLUX DATASET.

//ADIF3D DD DSN=&&ADIF3D,UNIT=&UNITSCR, SPACE=(TRK, (1,5)),

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

YV

// DCB= (RECFM=FB, LRECL=80, RiKSIZE= 000)

/1% 1,2 OR 3D DIFFUSLON MODULE DE' M 'JENT 3CD DATASET.
//ADJANG DD DSN=&ADJANG, UNIT=&UNTTS, SPACE=(CYL, (01,1)),

// DCB= (RECFM=VBS, LRECL=X, BLKS I ZE=&HALFTRK)

/1/* ADJOINT ANGULAR FLUX DATASET.

//ANGSRC DD DSN=&ANGSKC, UNIT=&UNITS, SPACE=(CYL, (01,1)),

// DCB= (RECFM=VBS, LRECL=X, ELKSIZE=&HALFTRK)

//* ANGULAR SOURCE COMPONENTS.

//BRHMG4C DD DSN=&&RHMGAC, UNIT=&UNITSCR, SPACE= (TRK, (1,0)),

'y DCB= (RECFM=FB, LRECL=80, RLKSIZE=6000)

/1/* CCCC HOMOGENIZATION MODULE DEPENDENT BCD DATASET.
//AISO DD DSN=&&AISO,UNIT=&UNITSCR, SPACE=(CYL, (4,1)),

// DCB= (RECFM=FB, LRECL=80, BLKSIZE=6000)

1/* THE ISOTXS BCD DATASET.

//ALASIP3 DD DSN=&&ALSIP3,UNIT=&UNITSCR, SPACE=(TRK, (3,1)),

// DCB= (RECFM=FB, LRECL=80, BLKSTZE=6000)

11% THE LASIP-III BCD DATASET

//ANIP3 DD DSN=&&ANIP3,UNIT=&UNITSCR, SPACE=(CYL, (1,1)),

I DCB= (RECFM=FB, LRECL=80, BLKSIZE=6000)

L+ THE ARC SYSTEM GENERAL NEUTRONICS BCD DATASET.
//ARC DD UNIT=&UNITSCR, SPACE=(CYL, (1,1)),

£l DCB= (RECFM=FB, LRECL=80, BLKSIZE=6000)

T ARC SYSTEM SPOOLED OUTPUT.

//ASUMMAR DD DSN=&ASUMMAR, UNIT=&UNITSCR, SPACE=(TRK, (3,1)),

il 4 DCB= (RECFM=FB, LRECL=80, BLKSIZE=6000)

(/% BCD INPUT DATASET FOR EDIT MODULE - SUMMARY
//ATFLUX DD DSN=&ATFLUX,DISP=&ATDSP, SPACE=(CYL, (&4ATCYL,1)),

11 UNIT=&UNITS, VOL=SER=&ATVOL,

i 4 DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

/1% CCCC ADJOINT FLUX INTERFACE DATASET.

//AUDOIT DD DSN=&AUDOIT,UNIT=&UNITSCR, SPACE=(TRK, (3,1)),

// DCB= (RECFM=VBS, LRECL=84, BLKSIZE=&QRTRTRK)

(1% BCD INPUT DATASET FOR UDOIT MODULES.

//BCDSOB DD SYSOUT=B, DCB= (RECFM=FB, LRECL=80,BLKSIZE=800)

L/ * BCDSOB PUNCHED OUTPUT FOR LASIP3 CODE

//COMPXS DD DSN=&COMPXS,UNIT=&UNITS, SPACE=(CYL, (3,1)),DISP=&CMPDSP,
// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&4HALFTRK)

L% COMPOSITION MACROSCOPIC CROSS-SECTION DATASET.
//DIF3D DD DSN=&DIF3D,UNIT=&UNITS, SPACE=(TRK, (1,0)),DISP=&4DIFDSP,
&/ DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&QRTRTRx)

//* 1, 2 OR 3D DIFFUSION MODULE DEPENDENT BINARY DATASET.
//DIRANG DD DSN=&DIRANG,UNIT=&UNITS, SPACE=(CYL, (01,1)),

// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

[/* DIRECT ANGLUAR FLUX DATASET.

//DLAYXS DD DSN=&DLAYXS,UNIT=&UNITS, SPACE=(CYL, (3,1)),DISP=&4DLADSP,
/4 DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

lL* PRECURSOR YELDS, EMISSION SPECTRA, AND DECAY CONSTANTS
//* ORDERED BY ISOTOPE

//D3EDIT DD DSN=&D3EDIT,UNIT=&UNITS, SPACE=(CYL, (1,1)),DISP=&D3DSP,

Figure 14. 1BM Catalogued Procedure APPROC (cont'd.)

-45-

il DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALF TRK)

//* DIF3D EDITS INTERFACE DATASET.

//FIXSRC DD DSN=&FIXSRC,UNIT=&UNITS,SPACE=(CYL, (01,1)),

i DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALF TRK)

//* CCCC FIXED SOURCE DATASET.

//FPRINT DD DSN=&FPRINT,UNIT=&UNITSCR,SPACE=(CYL, (1,1)),

7 DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

/1* FPRINT FILE FOR LASIP3.

//GEODST DD DSN=&GEODST,UNIT=&UNITS, SPACE=(CYL, (01,1)),DISP=&GEODSP,
L/ DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

//* CCCC GEOMETRY DESCRIPTION DATASET.

//GRAPHICS DD PLOTTER=G1DATA,DISP=(MOD,KEEP),DSN=&G1DATA,

L SPACE=(TRK, (150,10)),UNIT=SASCR

//* GRAPHICS OUTPUT DATASET

//INPTAP DD DSN=&INPTAP,UNIT=&UNITSCR, SPACE=(CYL, (01,1)),

Vi DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALF TRK)

1/* INPTAP FILE FOR LASIP3.

//ISNTXS DD DSN=&&ISNTXS,UNIT=&UNITS, SPACE=(CYL, (04,1)),

// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALF TRK)

/1/* CCCC (ISOTXS) TYPE FILE PRODUCED BY CSE010
//ISOTXS DD DSN=&ISOTXS,DISP=&ISODSP, SPACE=(CYL, (§ISOCYL,1)),
1/ UNIT=&UNITS,VOL=SER=&ISOVOL,

// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

[/* CCCC NUCLIDE-ORDERED MICROSCOPIC CROSS SECTIONS.
//1ISOTXS2 DD DSN=&ISOTX2,UNIT=&UNITS,SPACE=(CYL, (04,0)),

// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

i CCCC (ISOTXS) FILE USED FOR MERGING IN CSE010
//ISOTXS3 DD DSN=&ISOTX3,UNIT=&UNITS, SPACE=(CYL, (04,0)),

Jii4 DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

i dad CCCC (ISOTXS) FILE USED FOR MERGING IN CSE010
//LABELS DD DSN=&LABELS,UNIT=&UNITS, SPACE=(TRK, (3,0)),DISP=&LABDSP,
// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&TWELTRK)

Fi* A.NIP3 LABELS AND AREA DEFINITIONS.

//NAFLUX DD DSN=&NAFLUX,DISP=&NADSP, SPACE=(CYL, (&NACYL,1)),

// UNIT=&UNITS, VOL=SER=&NAVOL,

il DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

i RESTART FILE FOR ADJOINT NODAL HEX CALCULATION.
//NDXSRF DD DSN=&NDXSRF, UNIT=&UNITS, SPACE=(TRK, (03,0)),DISP=&NDXDSP,
[t DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

T CCCC NUCLIDE/CROSS SECTION REFERENCING DATA.
//NHFLUX DD DSN=&NHFLUX, DISP=&NHDSP, SPACE=(CYL, (&NHCYL, 1)),

// UNIT=&UNITS, VOL=SER=&NHVOL,

// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

/1% RESTART FILE FOR REAL NODAL HEX CALCULATION.
//PKEDIT DD DSN=&PKEDIT,UNIT=&UNITSCR, SPACE=(CYL, (1,1)),

// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

//* PEAK POWER DENSITY AND FLUX INTERFACE DATASET.
//PMATRX DD DSN=&PMATRX,UNIT=&UNITS, SPACE=(TRK, (03,0)),DISP=&PMADSP,
// DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

Figure 14. 1BM Catalogued Procedure APPROC (cont'd.)

- 46 -

/1%

/ /PWDINT
//

A

/ /RAFLUX
i

//

l1*

/ /RNDMO 1
Vil

l1*

/ /RNDM02
4

T

/ /RNDMO3
&f

[/*

/ /RNDMO 4
//

//*

/ /RNDMOS
//

1/*

/ /RNDMO 6
//

//1*

/ /RNDMO07
Vis

f/*
//RNDMO08
1/

/i

/ /RNDMO9
//

*
//RNDM10
Tk

/1*
//RNDM11
//

[[*
//RNDM12
1k

[1*
//RNDM13
//

//*

/ /RNDM14
ik

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

CCCC NUCLIDE/CROSS SECTION REFP.FENCLNG DATA.
DSN=&PWDINT, UNIT=&''NITS, SPACE=(CYL, /01,1)),DISE=6PWDDSP,

DCB= (RECFM=VBS, LRECL=X, BLKSI2E=4HALFTRK)

CCCC POWER DENSITY INTERFACE DATASET.
DSN=&RAFLUX, DISP=&RADSP, SPACE= (CYL, (4RACYL, 1)),

UNIT=&UNITS, VOL=SER=&ATVOL,

DCB= (RECFM=VBS, L.REZ].=X, BLKSIZE=&4HALFTRK)

CCCC REAL ANGULAK FLUX DATASET.
DSN=&&PSIOLD, SPACE= (&BLKTYP, (&PSICYT, 1)),

DCB=&MODEDCB, UNIT=&4UNITSCR

FLUX ITERATE SCRATCH DATASET.
DSN=&&PSINEW, SPACE= (§ELKTYP, (&PSICYL, 1)),

DCB=&MODEDCE, UNIT=&UNITSCR

FLUX ITERATE SCRATCH DATASET.
DSN=&&PSIUP, SPACE= (&BLKTYP?, (&PSUCYL, 1), ,

DCB=&MODEDCB, UNIT=&UNITSCKR

AUXILIARY FLUX DATASET FOR ADJOINT UPSCATTER ITERATIONS
DSN=&&FDCOEF, SPACE= (&BLKTYP, (4FDCCYL, 1)),

DCB=&MODEDCB, UNIT=&UNITSCR

FINITE DIFFERENCE COEFFICIENTS SCRATCH DATASET.
DSN=&&FRNOLD, SPACE= (§BLKTYP, (&FLXCYL,1;),

DCB=&MODEDCB, UNIT=&UNITSCR

FISSION SOURCE SCRATCH DATASET
DSN=&&FRNNEW, SPACE= (& BLKTYP, (&FLXCYL,1)),

DCB=&MODEDCB, UNIT=&UNITSCR

FISSION SOURCE SCRATCH DATASET
DSN=&&FRNM1, SPACE= (4BLKTYP, (&4FLXCYL,1)),

DCB=&MODEDCB, UNIT=&UNITSCR

FISSION SOURCE SCRATCH DATASET.
DSN=&&FRNM2, SPACE= (&BLKTYP, (§FLXCYL,1)),

DCB=&MODEDCB, UNIT=&UNITSCR

FISSION SOURCE SCRATCH DATASET.
DSN=&&SRCNEW, SPACE= (§BLKTYP, (§FLXCYL,1)),

DCB=&MODEDCB, UNIT=4UNITSCR .

TOTAL SOURCE SCRATCH DATASET.
DSN=&&ZONMAP , SPACE= (4BLKTYP, (&ZONCYL, 1)),

DCB=&MODEDCB, UNIT=&4UNITSCR

ZONE MAP SCRATCH DATASET.
DSN=&&CXSECT, SPACE= (&BLKTYP, (4CXSCYL, 1)) .

DCB=&MODEDCB, UNIT=§UNITSCR

COMPOSITION CROSS SECTIONS SCRATCH DATASET.
DSN=&&FSRC, SPACE= (4BLKTYP, (§PSICYL,1)),

DCB=&MODEDCB, UNIT=&4UNITSCR

FIXED SOURCE SCRATCH DATASET.
DSN=&&PSIGO, SPACE= (&BLKTYP, (§FLXCYL,1)),

DCB=&MODEDCB, UNIT=&UNITSCR

FLUX ITERATE SCRATCH DATASET ONE GROUP.
DSN=&&PSIGN, SPACE= (&§BLKTYP, (&FLXCYL,1)),

DCB=&MODEDCB, UNIT=&UNITSCR

Figure 14. 1BM Catalogued Procedure APPROC (cont'd.)

=47 -

s

/ /RNDM15
//

Ll
//RTFLUX
/i

//

/1*

/ /RZFLUX
il

l1*
//SCRATH
i

/1*
//SCRO01
4

//*
//SCR002
1/

A
//SCR003
//

LI
//SCR004
i

//*
//SCR005
//

//*
//SCR0O06
//

//*
//SCR007
//

L%
//SCR008
i

l/*
//SCR009
1/

/1*
//SCR0O10
//

//*
//SEARCH
L/

//*
//SFEDIT
//

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

DD

FLUX ITERATE SCRATCH DATASET ONE GROUP.

DSN=&&RNDM15, SPACE= (&BLKTYP, (1,1)),
DCB=&MODEDCB, UNIT=&UNITSCR
FLUX ITERATE SCRATCH DATASET ONE GROUP.

DSN=&RTFLUX, DISP=&RTDSP, SPACE= (CYL, (&RTCYL, 1)),
UNIT=&UNITS, VOL=SER=&RTVOL,

DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
CCCC REAL FLUX INTERFACE DATASET.

DSN=&RZFLUX, UNIT=&UNITS, SPACE=(TRK, (01,1)),DISP=&RZDSP,
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
CCCC ZONE AVERAGED FLUX INTERFACE DATASET.

DSN=&SCRATH, UNIT=&UNITSCR, SPACE=(CYL, (1,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATH FILE FOR LASIP3.

DSN=&SCR001, UNIT=&UNITSCR, SPACE=(CYL, (&SRFCYL,2)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 1.

DSN=&SCR002, UNIT=&UNITSCR, SPACE=(CYL, (§SRFCYL,2)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 2.

DSN=&SCR003, UNIT=&UNITSCR, SPACE=(CYL, (01,1)),
DCB= (RECFM=VES, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 3.

DSN=&SCR004, UNIT=&UNITSCR, SPACE=(CYL, (01,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 4.

DSN=&SCR005, UNIT=&UNITSCR, SPACE= (CYL, (01,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&4HALFTRK)
SCRATCH FILE 5.

DSN=&SCR006, UNIT=&UNITSCR, SPACE= (CYL, (01,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 6.

DSN=&SCR007, UNIT=&UNITSCR, SPACE=(CYL, (01,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 7.

DSN=&SCR008, UNIT=&4UNITSCR, SPACE=(CYL, (01,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 8.

DSN=&SCR009, UNIT=&UNITSCR, SPACE=(CYL, (01,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 9.

DSN=&SCR010, UNIT=&UNITSCR, SPACE=(CYL, (01,1)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
SCRATCH FILE 10.

DSN=&SEARCH, UNIT=&UNITSCR, SPACE=(TRK, (03,0)),
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
CCCC CRITICALITY SEARCH DATA.

DSN=&SFEDIT, UNIT=&UNITS, SPACE=(CYL, (01,1)),DISP=&SFDSP,
DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

Figure 14. 1BM Catalogued Procedure APPROC (cont'd.)

-48 -

A
/1%

SURFACE- AND CELL-AVERAGED POWER DENSITY AND FAST FLUX
DATASET

//SNCONS DD DSN=&SNCONS, UNIT=&INITSCR, SPACE={1RK, (01,1)),

//
£1*

DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
CCCC SN CONSTANTS DATASET.

//STACK DD DSN=&STACK, UNIT=&UNITS, SPACE=(CYL, (01,1)),DISP=&STADSP,

g
" dd

DCB= (RECFM=VBS, LRECL=X, BLKSIZ2E=&HALEFTRK)
STACK DATASET

//SYSUDUMP DD SYSOUT=&DMPDEST

i o

SYSTEM DUMP DATASET FOR ABNORMAL NJB TERMINATION.

//UDOIT1 DD DSN=&UDOIT1, UNIT=&UNITSCR, SPACE= (CYL, (01,1)),

/1
/1*

DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HAL? TRK)
UDOIT INTERFACE FILE VERSION 1.

//UDOIT2 DD DSN=&UDOIT2,UNIT=&UNITSCR, SPACE=(CYL, (01,1)),

1/
4/

DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALF TRK)
UDOIT INTERFACE FILE VERSION 2.

//UDOIT3 DD DSN=&UDOIT3,UNIT=&UNITSCR, SPACE=(CYL, (01,1)),

//
g

DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)
UDOIT INTERFACE FILE VERSION 3.

//ZNATDN DD DSN=&ZNATDN, UNIT=&UNITS, SPACE=(CYL, (01,1)),DISP=&ZNADSP,

&/

LLE
1%
Lix
i
/i
i
gLk
Gl

DCB= (RECFM=VBS, LRECL=X, BLKSIZE=&HALFTRK)

CCCC ZONE NUCLIDE ATOM DENSITIES.
ke ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok kR ok o sk ok ok ok ok ke ok ok ok ok ok ok Sk ok

ANYONE EXPERIENCING DIFFICULTY WITH THIS PROCEDURE CONTACT
C. ADAMS BLDG 208, ROOM W117, EXT 4820

k% ok ok Kk ok ok k kK ok sk Kk sk K ok ke ok ok Kk ok ok ok Ak ok ok ok ok e ok ok ok e ke ok Ak ke Rk ok ok ke k ke ok

Figure 14. IBM Catalogued Procedure APPROC (cont'd.)

-49 -

